

Holistic approach towards Empowerment of the Digitalization of the Energy Ecosystem through adoption of IoT solutions

D7.3 Dissemination, Exploitation and market exploration, standardisation, and community building

This project has received funding from the European Union's Horizon Europe research and innovation programme under the Grant Agreement number 101136216 Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Climate, Infrastructure and Environment Executive Agency. Neither the European Union or the granting authority can be held responsible for them.

DOCUMENT CONTROL SHEET

PROJECT INFORMATION				
Project Number	101136216			
Project Acronym	HEDGE-IoT			
Project Full title	HOLISTIC APPROACH TOWARDS EMPOWERMENT OF THE DIGITALIZATION OF THE ENERGY ECOSYSTEM THROUGH ADOPTION OF IOT SOLUTIONS			
Project Start Date	01 JANUARY 2024			
Project Duration	42 months			
Funding Instrument	HORIZON Type of action HORIZON Innovation Actions			
Call	HORIZON-CL5-2023-D3-01			
Торіс	HORIZON-CL5-2023-D3-01-15			
Coordinator	EUROPEAN DYNAMICS LUXEMBOURG SA (ED)			

DELIVERABLE INFORMATION

Deliverable No.	D7.3	5							
Deliverable Title	Diss comi	EMINATION, EXPI MUNITY BUILDING	LOIT	ATION AND MARKET	EXPI	LORATION,	STANDARDIS	SATION,	AND
Work-Package No.	WP	WP7							
Work-Package Title	Diss	DISSEMINATION, EXPLOITATION, STANDARDIZATION							
Lead Beneficiary	F6S								
Main Author	Ana	BARBOSA DE MELO)(F	6S); Vukašin Orsić (F	6S)				
Other Authors	NIKOLAOS BILIDIS (ED); LENOS PERATITIS (ED); LÉO CORNEC (TRIALOG); ANTONIO KUNG (TRIALOG); OLIVIER GENEST (TRIALOG); IOANNIS MICHOS (CLUBE)								
Due date	M12								
Deliverable Type	Х	Document, Report (R)		Data management plan (DMP)		Websites media act (DEC)	, press & tion	Oth	ner
Dissemination Level	Х	Public (PU)		Sensitive (SEN)		Classified	1		
	PU: Public, fully open								
	SEN: Sensitive, limited under the conditions of the Grant Agreement								
	Classified R-UE/EU-R – EU RESTRICTED under the Commission Decision No2015/444								
	Class	sified C-UE/EU-C – E	EU CO	ONFIDENTIAL under the	Comm	ission Decis	ion No2015/44	44	
	Class	sified S-UE/EU-S – E	EUSE	ECRET under the Commis	ssion (Decision No2	2015/444		

DOCUMENT REVISION HISTORY

Version	Date	Description of change	List of contributor(s)
V0.0	13/11/2024	Initial Table of Contents	Ana Barbosa de Melo (F6S)
V0.1	29/11/2024	Inclusion of contribution from ED	Nikolaos Bilidis (ED); Lenos Peratitis (ED)
V0.2	02/12/2024	Inclusion of contributions from TRIALOG and CLUBE	Léo Cornec (TRIALOG); Antonio Kung (TRIALOG); Olivier Genest (TRIALOG); Ioannis Michos (CLUBE)
V1.0	10/12/2024	Inclusion of contributions from F6S, Final revision and Formatting.	Vukašin Orsić (F6S); Ana Barbosa de Melo (F6S);
V1.1	17/12/2024	Revision from official reviewer TNO	Laura Daniele (TNO);
	19/12/2024	Revision from official reviewer QUE	Thanos Kalamaris (QUE)
	19/12/2024	Inclusion of updates from partners TRIALOG and CLUBE	Léo Cornec (TRIALOG); Ioannis Michos (CLUBE)
V2.0	19/12/2024	Consolidation of Final version	Ana Barbosa de Melo (F6S)

PARTNERS

Participant number	Participant organisation name	Short name	Country
1	EUROPEAN DYNAMICS LUXEMBOURG SA	ED	LU
2	RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN	RWTH	EL
3	ENGINEERING - INGEGNERIA INFORMATICA SPA	ENG	IT
4	EREVNITIKO PANEPISTIMIAKO INSTITOUTO SYSTIMATON EPIKOINONION KAI YPOLOGISTON	ICCS	EL
5	INESC TEC - INSTITUTO DE ENGENHARIADE SISTEMAS E COMPUTADORES, TECNOLOGIA E CIENCIA	INESC	PT
6	NEDERLANDSE ORGANISATIE VOOR TOEGEPAST NATUURWETENSCHAPPELIJK ONDERZOEK TNO	TNO	NL
7	TAMPEREEN KORKEAKOULUSAATIO SR	TAU	FI
8	TEKNOLOGIAN TUTKIMUSKESKUS VTT OY	VTT	FI
9	TRIALOG	TRIALOG	FR
10	CYBERETHICS LAB SRLS	CEL	IT
11	CENTRO DE INVESTIGACAO EM ENERGIA REN - STATE GRID SA		PT
12	INTERNATIONAL DATA SPACES EV	IDSA	DE
13	ELIA TRANSMISSION BELGIUM	ETB	BE
14	HRVATSKI OPERATOR PRIJENOSNOG SUSTAVA D.D.	HOPS	HR
15	UNIVERSITATEA TEHNICA CLUJ-NAPOCA		RO
16	16 CLUSTER VIOOIKONOMIAS KAI PERIVALLONTOS DYTIKIS MAKEDONIAS		EL
17	F6S NETWORK IRELAND LIMITED	F6S	IE
18	18 SOCIAL OPEN AND INCLUSIVE INNOVATION ASTIKI MI KERDOSKOPIKI ETAIREIA		EL
19	ABB OY	ABB	FI
20	ENERVA OY	ENERV	FI
21	JARVI-SUOMEN ENERGIA OY	JSE	FI
22	DIMOSIA EPICHEIRISI ILEKTRISMOU ANONYMI ETAIREIA	PPC	EL
23	23 DIACHEIRISTIS ELLINIKOU DIKTYOU DIANOMIS ELEKTRIKIS ENERGEIAS AE		EL

24	INDEPENDENT POWER TRANSMISSION OPERATOR SA	IPTO	EL
25	ELLINIKO HRIMATISTIRIO ENERGEIAS	HENEX	EL
26	HARDWARE AND SOFTWARE ENGINEERING EPE	HSE	EL
27	QUE TECHNOLOGIES KEFALAIOUCHIKI ETAIREIA	QUE	EL
28	ARETI S.P.A.	ARETI	IT
29	APIO S.R.L.	APIO	IT
30	ACEA ENERGIA SPA	AE	IT
31	VOLKERWESSELS ICITY B.V.	VWICI	NL
32	ARNHEMS BUITEN BV	AB	NL
33	STICHTING VU	VU	NL
34	COOPERATIVE ELECTRICA DO VALE DESTE CRL	CEVE	PT
35	REN - REDE ELECTRICA NACIONAL SA	REN	PT
36	MC SHARED SERVICES SA	SONAE	PT
37	ELES DOO SISTEMSKI OPERATER PRENOSNEGA ELEKTROENERGETSKEGA OMREZJA		SI
38	ELEKTRO GORENJSKA PODJETJE ZA DISTRIBUCIJO ELEKTRICNE ENERGIJE DD		SI
39	OPERATO DOO	OPR	SI
40	SVEUCILISTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RACUNARSTVA	UNIZG	HR
41	INSTITUT JOZEF STEFAN	JSI	SI
42	KONCAR - DIGITAL DOO ZA DIGITALNE USLUGE	KONC	HR

DISCLAIMER

This deliverable is subject to final acceptance by the European Commission. The content and results of the publication herein are the sole responsibility of the publishers, it reflects only the contributors' view, and it does not necessarily represent the views expressed by the European Commission or its services, neither the European Commission is responsible for any use that may be made of the information it contains.

While the information contained in the documents is believed to be accurate, the contributor(s) or any other participant in the HEDGE-IoT Consortium make no warranty of any kind regarding this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Neither the HEDGE-IoT Consortium nor any of its members, their officers, employees, or agents shall be responsible or liable in negligence or otherwise howsoever in respect of any inaccuracy or omission herein. Without derogating from the generality of the foregoing, neither the HEDGE-IoT Consortium nor any of its members, their officers, employees, or agents shall be liable for any direct or indirect or consequential loss or damage caused by or arising from any information advice or inaccuracy or omission herein.

COPYRIGHT NOTICE

© HEDGE-IoT, 2024

This deliverable and its content are the property of the HEDGE-IoT Consortium. This deliverable contains original unpublished work except where clearly indicated otherwise. Acknowledgement of previously published material and of the work of others has been made through appropriate citation, quotation, or both. Reproduction is authorised provided the source is acknowledged. The content of all or parts of these documents can be used and distributed provided that the HEDGE-IoT project and the document are properly referenced.

EXECUTIVE SUMMARY

Deliverable 7.3 provides a comprehensive report on the communication, dissemination, exploitation, standardisation, and community-building activities undertaken during the first 12 months of the HEDGE-IoT project. This document, the first of three iterations, sets the foundation for ongoing and future efforts to promote the project, its results, and its alignment with EU priorities, while engaging key stakeholders and exploring market opportunities. It is structured into five main chapters, each contributed by a specific partner.

The deliverable concludes with recommendations to ensure the alignment of activities with project objectives and Key Performance Indicators (KPIs).

The communication and dissemination efforts aim to promote the HEDGE-IoT project to a wide range of audiences, from the general public to specific stakeholder groups such as the scientific community, industry, and policymakers. Dissemination activities focus on publicly disclosing project results to maximise their utility and impact, while communication efforts ensure the project's benefits and are accessible and understood by diverse audiences.

The deliverable emphasises the importance of fostering clear communication channels within the consortium and beyond, ensuring that the project's results address societal challenges and contribute to a sustainable energy transition. Key stakeholders are actively engaged in the project's implementation phases, ensuring their input and involvement in shaping the outcomes.

The first set of exploitation activities focused on establishing an initial alignment between the technical developments and market demands, regulatory requirements, and societal needs, to ensure short and long-term utilisation of project results.

HEDGE-loT's first-year achievements set a strong foundation for an intensive, clear, and effective strategy for dissemination, communication, and exploitation in the years ahead. These efforts, guided by well-defined plans and KPIs, are critical for driving awareness, adoption, and the long-term success of the project.

TABLE OF CONTENTS

Contents

1	INTRODUCTION	.12
2	DISSEMINATION AND COMMUNICATION	.13
2.1	Strategy for Year 1	. 13
2.2	Activities implemented in Year 1	. 13
2.2.1	Communication activities	. 13
2.2.2	Dissemination Activities	23
2.3	Monitoring and Impact	28
2.3.1	KPIs and CD Indicators	29
2.4	Strategy for Year 2	32
3	EXPLOITATION AND MARKET EXPLORATION	33
3.1	Strategy for year 1	33
3.1.1	Comprehensive ker identification and analysis	33
3.1.2	Stakeholder-centric approach	34
3.1.3	Preparation of ipr framework	34
3.1.4	Market Exploration	35
3.2	Activities implemented in Year 1	36
3.3	Strategy for Year 2	.37
3.3.1	Advancing ker exploitation	.37
3.3.2	Enhancing stakeholder collaboration	.37
3.3.3	Market analysis	38
4	STANDARDIZATION	40
4.1	Strategy	40
4.2	Targeted subjects and groups	. 41
4.3	Standards overview by topics	. 41
5	COMMUNITY BUILDING AND STAKEHOLDER ENGAGEMENT	46
5.1	Strategy for year 1	46
5.1.1	ODEON	47
5.1.2	The BRIDGE Initiative	47
5.1.3	AIOTI	48
5.1.4	CEEDS DIGITAL Europe deployment	48
5.1.5	METAOS for the edge projects	49
5.1.6	SWARM PROJECTs	50

7	APPENDIX A – KER ANALYSIS PER PARTNER	58
6	CONCLUSIONS AND RECOMMENDATIONS	56
5.3	Strategy for Year 2	54
5.2.3	Engagement Activities and Platforms	54
5.2.2	Partnerships and Collaborations with Initiatives:	54
5.2.1	Partnerships and Collaborations with Projects:	53
5.2	Activities implemented in Year 1	53
5.1.9	TwinEU	52
5.1.8	CEF Digital Operational Digital Platforms	52
5.1.7	COORDINATION AND SUPPORT ACTIONS	. 51

LIST OF TABLES

TABLE 1: LIST OF ALL THE ARTICLES PUBLISHED SO FAR IN THE SCOPE OF "PARTNERS ARTICLES" CAMPAIGN 21
TABLE 2: SUMMARY OF THE HEDGE-IOT PUBLICATIONS PUBLISHED UNTIL M12
TABLE 3: COMMUNICATION AND DISSEMINATION KPIS
TABLE 4: KER#1 A SET OF IOT SOLUTIONS DEPLOYED ACROSS THE ENERGY SYSTEM OFFERING INTELLIGENCE AT THE EDGE LEVEL 59
TABLE 5: KER#2 A SERVICE ORCHESTRATOR TO FACILITATE COMPUTATIONAL SHARING BETWEEN THE CLOUD AND EDGE LEVELS
TABLE 6: KER#3 A SET OF AI/ML TOOLS FOR EDGE AND CLOUD LEVELS TOWARDS OPTIMISED PLANNING, OPERATION, RESILIENCE OF INTERCONNECTED ASSETS
TABLE 7: KER#4 A SET OF SCALABLE DATA-DRIVEN ENERGY AND NON-ENERGY SERVICES FOR END-USERS(E.G., CONSUMERS, BUILDING OCCUPANTS, SOS)
TABLE 8: KER#5 AN OPEN APP REPOSITORY TO POPULATE EDGE/CLOUD AND FOR LEVEL AI/ML TOOLS FOR ENERGY STAKEHOLDERS AND SOS
TABLE 9: KER#6 AN IDS-BASED DATA CONNECTOR TO FACILITATE INTERCONNECTIVITY AMONG DISTRIBUTED SYSTEMS
TABLE 10: KER#7 INTEROPERABLE IDS-COMPLIANT DATA GOVERNANCE MIDDLEWARE WITH A DATA- SERVICE CATALOGUE FOR SERVICE INTEROPERABILITY AT EDGE-FOG-CLOUD LAYERS
TABLE 11: KER#8 AN INTEROPERABLE RA ENABLING DIGITALIZATION OF THE ENERGY SYSTEM THROUGH
I RE UNLEASH OF IUT DEVICES00
TABLE 12: KER#9 TECHNOLOGICAL IMPLEMENTATION OF THE RA 82
TABLE 12: KER#9 TECHNOLOGICAL IMPLEMENTATION OF THE RA 82 TABLE 13: KER#10 BEST PRACTICES FROM DEMONSTRATION OF INNOVATIVE SOLUTIONS FOR THE DIGITALIZATION OF THE ENERGY SYSTEM 84
TABLE 12: KER#9 TECHNOLOGICAL IMPLEMENTATION OF THE RA 82 TABLE 12: KER#10 BEST PRACTICES FROM DEMONSTRATION OF INNOVATIVE SOLUTIONS FOR THE DIGITALIZATION OF THE ENERGY SYSTEM 84 TABLE 14: KER#11 A SET OF RECOMMENDATIONS FOR EXTENDED IOT-ENABLED GRID RESILIENCE AND FLEXIBILITY AND THE EXTENSION OF STANDARDS ACROSS GRID LEVELS 86
TABLE 12: KER#9 TECHNOLOGICAL IMPLEMENTATION OF THE RA 82 TABLE 12: KER#10 BEST PRACTICES FROM DEMONSTRATION OF INNOVATIVE SOLUTIONS FOR THE DIGITALIZATION OF THE ENERGY SYSTEM 84 TABLE 14: KER#11 A SET OF RECOMMENDATIONS FOR EXTENDED IOT-ENABLED GRID RESILIENCE AND FLEXIBILITY AND THE EXTENSION OF STANDARDS ACROSS GRID LEVELS 86 TABLE 15: KER#12 A SET OF SEMANTIC AND ONTOLOGY STANDARDS, FOR IOT-ENABLED GRID DIGITALIZATION 90
TABLE 12: KER#9 TECHNOLOGICAL IMPLEMENTATION OF THE RA 82 TABLE 13: KER#10 BEST PRACTICES FROM DEMONSTRATION OF INNOVATIVE SOLUTIONS FOR THE DIGITALIZATION OF THE ENERGY SYSTEM 84 TABLE 14: KER#11 A SET OF RECOMMENDATIONS FOR EXTENDED IOT-ENABLED GRID RESILIENCE AND FLEXIBILITY AND THE EXTENSION OF STANDARDS ACROSS GRID LEVELS 86 TABLE 15: KER#12 A SET OF SEMANTIC AND ONTOLOGY STANDARDS, FOR IOT-ENABLED GRID DIGITALIZATION 90 TABLE 16: KER#13 INCREASED FLEXIBILITY INCORPORATION ENABLED BY IOT/EDGE TECHNOLOGIES FOR GRID SECURITY. 91
TABLE 12: KER#9 TECHNOLOGICAL IMPLEMENTATION OF THE RA 82 TABLE 13: KER#10 BEST PRACTICES FROM DEMONSTRATION OF INNOVATIVE SOLUTIONS FOR THE DIGITALIZATION OF THE ENERGY SYSTEM 84 TABLE 14: KER#11 A SET OF RECOMMENDATIONS FOR EXTENDED IOT-ENABLED GRID RESILIENCE AND FLEXIBILITY AND THE EXTENSION OF STANDARDS ACROSS GRID LEVELS. 86 TABLE 15: KER#12 A SET OF SEMANTIC AND ONTOLOGY STANDARDS, FOR IOT-ENABLED GRID DIGITALIZATION. 90 TABLE 16: KER#13 INCREASED FLEXIBILITY INCORPORATION ENABLED BY IOT/EDGE TECHNOLOGIES FOR GRID SECURITY. 91 TABLE 17: KER#14 A CAMPAIGN TO ATTRACT SMES AND INNOVATORS TO PARTICIPATE IN THE OPEN CALLS OF HEDGE-IOT. 101
TABLE 12: KER#9 TECHNOLOGICAL IMPLEMENTATION OF THE RA
TABLE 12: KER#10 FIGT DEVICES
TABLE 12: KER#9 TECHNOLOGICAL IMPLEMENTATION OF THE RA 82 TABLE 12: KER#10 BEST PRACTICES FROM DEMONSTRATION OF INNOVATIVE SOLUTIONS FOR THE DIGITALIZATION OF THE ENERGY SYSTEM 84 TABLE 14: KER#11 A SET OF RECOMMENDATIONS FOR EXTENDED IOT-ENABLED GRID RESILIENCE AND FLEXIBILITY AND THE EXTENSION OF STANDARDS ACROSS GRID LEVELS. 86 TABLE 15: KER#12 A SET OF SEMANTIC AND ONTOLOGY STANDARDS, FOR IOT-ENABLED GRID DIGITALIZATION. 90 TABLE 16: KER#13 INCREASED FLEXIBILITY INCORPORATION ENABLED BY IOT/EDGE TECHNOLOGIES FOR GRID SECURITY. 91 TABLE 17: KER#14 A CAMPAIGN TO ATTRACT SMES AND INNOVATORS TO PARTICIPATE IN THE OPEN CALLS OF HEDGE-IOT 101 TABLE 18: KER#15 A SET OF UP TO 30 OPEN CALL PROJECTS OFFERING NEW DATA-DRIVEN SERVICES AND FUNCTIONALITIES COMPLEMENTING THE HEDGE-IOT FRAMEWORK. 103 TABLE 19: KER#16 A CONCRETE DISSEMINATION AND COMMUNICATION PLAN INCLUDING CLUSTERING ACTIVITIES AND SYNERGIES WITH RELEVANT EUROPEAN INITIATIVES AND PROJECTS 105 TABLE 20 KER# 17 DEVELOPMENT OF AN AI PLAN TO ENSURE THAT THE AI DEVELOP IN THE PROJECT ARE ADEQUATELY MANAGE AND ENSURE TRUSTWORTHINESS. 106
THE UNLEASH OF IOT DEVICES 80 TABLE 12: KER#9 TECHNOLOGICAL IMPLEMENTATION OF THE RA 82 TABLE 13: KER#10 BEST PRACTICES FROM DEMONSTRATION OF INNOVATIVE SOLUTIONS FOR THE DIGITALIZATION OF THE ENERGY SYSTEM 84 TABLE 14: KER#11 A SET OF RECOMMENDATIONS FOR EXTENDED IOT-ENABLED GRID RESILIENCE AND FLEXIBILITY AND THE EXTENSION OF STANDARDS ACROSS GRID LEVELS 86 TABLE 15: KER#12 A SET OF SEMANTIC AND ONTOLOGY STANDARDS, FOR IOT-ENABLED GRID DIGITALIZATION 90 TABLE 16: KER#13 INCREASED FLEXIBILITY INCORPORATION ENABLED BY IOT/EDGE TECHNOLOGIES FOR GRID SECURITY. 91 TABLE 17: KER#14 A CAMPAIGN TO ATTRACT SMES AND INNOVATORS TO PARTICIPATE IN THE OPEN CALLS OF HEDGE-IOT 101 TABLE 18: KER#15 A SET OF UP TO 30 OPEN CALL PROJECTS OFFERING NEW DATA-DRIVEN SERVICES AND FUNCTIONALITIES COMPLEMENTING THE HEDGE-IOT FRAMEWORK 103 TABLE 19: KER#16 A CONCRETE DISSEMINATION AND COMMUNICATION PLAN INCLUDING CLUSTERING ACTIVITIES AND SYNERGIES WITH RELEVANT EUROPEAN INITIATIVES AND PROJECTS 105 TABLE 20 KER# 17 DEVELOPMENT OF AN AI PLAN TO ENSURE THAT THE AI DEVELOP IN THE PROJECT ARE ADEQUATELY MANAGE AND ENSURE TRUSTWORTHINESS 106 TABLE 21 KER 18 FURTHER DEVELOPMENT OF THE ODCT (ONTOLOGY-DRIVEN CONSTRAITS TESTER) TOOL. NEW USE CASES, NEW FEATURES AND VALIDATION ON REAL DATA. 106

LIST OF FIGURES

FIGURE 1: HEDGE-IOT LINKEDIN PAGE
FIGURE 2: HEDGE-IOT LINKEDIN PAGE
FIGURE 3: HEDGE-IOT FACEBOOK PAGE17
FIGURE 4: HEDGE-IOT YOUTUBE CHANNEL
FIGURE 5: EXAMPLE OF A SOCIAL MEDIA POST PUBLISHED IN THE SCOPE OF THE "HEDGE-IOT OBJECTIVES" CAMPAIGN
FIGURE 6: EXAMPLE OF A SOCIAL MEDIA POST DEVELOPED IN THE SCOPE OF "MEET OUR PARTNERS" CAMPAIGN
FIGURE 7: EXAMPLE OF A WEBSITE ARTICLE WRITTEN BY KONČAR, ONE OF THE HEDGE-IOT PARTNERS IN THE SCOPE OF "PARTNERS ARTICLES" CAMPAIGN20
FIGURE 8: EXAMPLE OF A SOCIAL MEDIA POST PROMOTING THE ARTICLE WRITTEN BY OPERATO, ONE OF THE HEDGE-IOT PARTNERS, IN THE SCOPE OF "PARTNERS ARTICLES" CAMPAIGN
FIGURE 9: EXAMPLE OF A SOCIAL MEDIA POST DEVELOPED FOR THE "INTERNATIONAL WOMEN'S DAY" CAMPAIGN
FIGURE 10: PHOTO OF THE HEDGE-IOT PRESENTATION FROM THE MIPRO CONFERENCE
FIGURE 11: PHOTO FROM THE LISBON ENERGY SUMMIT SHOWCASING THE BOOTH WITH THE HEDGE-IOT BRANDING
FIGURE 12: PHOTO OF THE HEDGE-IOT BOOTH AND TEAM AT ENLIT EUROPE 202425
FIGURE 13: PHOTO OF F6S TEAM PROMOTING HEDGE-IOT AT WEBIT 2024
FIGURE 13: SNIPPETS OF A WORD DOCUMENT USED FOR PLANNING AND SCHEDULING SOCIAL MEDIA POSTS FOR THE HEDGE-IOT SOCIAL MEDIA NETWORKS
FIGURE 14: STANDARDIZATION PERSPECTIVE ON DATA ECOSYSTEM (PRESENTED BY ANTONIO KUNG IN THE CONTEXT OF A DIM MEETING)
FIGURE 15: STANDARDIZATION PERSPECTIVE ON PRIVACY (CREATED AND MAINTAINED BY ANTONIO KUNG FROM TRIALOG)
FIGURE 16: STANDARDIZATION PERSPECTIVE ON AI (CREATED AND MAINTAINED BY ANTONIO KUNG FROM TRIALOG)
FIGURE 17: STANDARDIZATION PERSPECTIVE ON TRUSTWORTHINESS

	ABBREVIATIONS
aerOS	Autonomous, Scalable, Trustworthy, Intelligent European Meta Operating System
AI	Artificial Intelligence
AIOT	Artificial Intelligence of Things
AIOTI	The Alliance for IoT and Edge Computing Innovation
CEEDS	Common European Data Spaces
CEEDS	Common European Energy Data Space
CEF	Connecting Europe Facility
CEI	Cloud-Edge-IoT
CSAs	Coordination and Support Actions
CSI	Continuous Semantic Integration
DC	Dissemination and Communication
DSOs	Distribution System Operators
DT	Digital Twin
EU	European Union
FluiDOS	Flexible, Scalable, Secure, and Decentralized Operating System
HPC	High Performance Computing
IoT	Internet of Things
KOM	Kick-Off Meeting
LEC	Local Energy Community
ML	Machine Learning
NEMO	Next Generation Meta Operating System
ODPs	Operational Digital Platforms
SNN	Spiking Neural Network
TaRDIS	Trustworthy and Resilient Decentralized Intelligence for Edge Systems
TEF	Testing and Experimentation Facility (AI)
WG	Working Group
WP	Work Package

1 INTRODUCTION

Deliverable 7.3 "Dissemination, Exploitation and market exploration, standardisation, and community building" is a first iteration of a public document that aims to report on the communication, dissemination and exploitation activities, standardisation suggestions and liaisons with other projects and initiatives conducted until the M12 of the project's lifetime. This document will be updated two times until the end of the project - in M27 and M42.

Considering different stage of implementation of the reported activities, the information provided by the contributing partners is organized in different chapters, each produced by a different partner:

- F6S covered chapter 2. Dissemination and Communication, this section highlights the communication and dissemination efforts of the first year, including social media campaigns, KPI achievements, and plans for expanding activities in the project's second year.
- CLUBE covered chapter 3. Exploitation and Market Exploration, where they presented the strategy and activities implemented in the first year, KER identification and analysis, market exploration and analysis, as well as planning for the second year of the project.
- TRIALOG covered chapter 4. Standardisation, presenting the strategy for the • standardisation activities, targeted subject and groups and providing an overview of some relevant standards considering HEDGE-IoT scope.
- ED covered chapter 5. Community Building and Stakeholder Engagement, discussing activities aimed at building a strong community and fostering connections with stakeholders, related projects, and initiatives, along with plans for continued engagement in the second year.
- Finally, last chapter includes conclusions and recommendations taken from this deliverable

As Exploitation and standardisation activities progress, along with the project implementation, it is expected that the reporting activities, main strategies and conclusions become more integrated and aligned.

2 DISSEMINATION AND COMMUNICATION

2.1 STRATEGY FOR YEAR1

Dissemination and communication (DC) represent horizontal activities in HEDGE-IoT. Communication activities aim to promote the action and its results to multiple audiences, including the media and the broad public. Whilst dissemination activities aim to publicly disclose results to enable others to understand and use them.

As the technical results of the project are still not available to the public, DC activities in Year 1 aimed to boosting HEDGE-IoT's brand awareness and credibility with compelling visual identity and strategic engagement communication, targeting both the general public and main the industry players.

- Producing the visual identity of the project and specific materials: logo, templates, brochure, Posters, Roll-ups
- Creating and activating specific Communications channels (website and social media accounts)
- Raising awareness about the Project's objectives and expected outcomes (specific social media campaigns and targeted communication)
- Raising awareness about the Consortium and its partners (specific social media Campaigns)
- Initial engaging activities with both general and targeted audiences.

As explained in the Communication and Dissemination Plan, the focus was on DC activities for awareness, targeting mainly the general public and those stakeholders that should be aware of the work of HEDGE-IoT but do not require detailed knowledge of the project.

With this focus, four Social Media Campaigns were organized, and results are detailed in the following section. By using multi-channel communication, the project started to foster closer links with its targeted audiences, across various topics important to identified ecosystem stakeholders.

Finally, a monitoring system was designed to ensure proper collection of relevant DC inputs from project's partners, monitoring results and reporting on DC activities.

2.2 ACTIVITIES IMPLEMENTED IN YEAR 1

2.2.1 COMMUNICATION ACTIVITIES

In Year 1, HEDGE-IoT had a proactive and well-planned communication efforts, with tailored messaging, both in terms of content and target group definition. This contributed to secure both wide and targeted communication among HEDGE-IoT target audience and to enable active engagement of partners and stakeholders.

A coherent approach towards visual identity was adopted to synchronise communication activities performed by HEDGE-IoT consortium. Easy-to-understand visual content will continue to ensure wide recognizability of the project's ideas and benefits and will continue to have a positive impact on the engagement of all stakeholders.

HEDGE-IoT has directed its communication efforts on a wide array of communication channels. This is proving to be an effective method for raising awareness of the project and fruitfully connecting target audiences, researchers, industry leaders, and other stakeholders.

The project is using the potential of its 8 different dissemination and communication channels to boost its presence: LinkedIn, Facebook, Instagram, Twitter/X, YouTube, project website, Mailchimp and F6S platform.

2.2.1.1 HEDGE-IoT Visual Tools

The main visual tools were developed in the first 3 months of the project and are already included in the DC Plan and follow the EU specifications.

We hereby summarize the main achievements:

- **Visual identity** of the project was developed, as a foundation for all communication products and tools and establishment of a strong brand, including the project logo and style. A specific color pallet was used, to ensure consistency.
- **Word and Power Point templates** we developed to ensure coherent representation of the project.
- **Institutional presentation** was created, containing the most relevant information about the project
- **Promotion Materials** were created and used in several DC activities implemented during Year 1(leaflet, roll-up, flyer, poster), all including the EU.

2.2.1.2 HEDGE-IoT Website

HEDGE-IOT website is the main interface for communication with the public and it is suitable for addressing the various target audiences in HEDGE-IOT. The website domain (<u>https://hedgeiot.eu/</u>) was launched in March 2024 and will be available for a period of the project duration and additional 5 years after the lifetime of the project.

As a key management tool, the website is considered a living platform which will continue to change and grow throughout the project. F6S updates the project website based on contributions from all partners and the activities that take place.

The website displays information on the aims, objectives, members and consortium, Open Calls, etc. This online platform will also include important information about the project (testimonials, working materials and activities, downloadable promotional material, deliverables, PowerPoint presentations and videos), events, reports announcements, photos, news and links to downloads.

The website contains the following sections and features:

- Home page Description of the project scope and objectives, link to the latest news published on the website, links to the social media channel and funding information, project logo.
- About page Description of the project objectives in more details, as well as pilot areas, work plan and consortium members
- Resources section Links to public deliverables, scientific publications, press kit and press releases.
- News page Blog posts informing the stakeholders about the project's progress, planned and realised activities and upcoming events.
- Contact page Contact form is available on the page with the "Send message" button forwarding the mail to <u>info@hedgeiot.eu</u>. This enables easy communication with our stakeholders.

HEDGE-IoT website Privacy Policy, Cookies Policy and Terms and Conditions have also been included, setting the general rules and policies, in accordance with the relevant regulations such as General Data Protection Regulation (GDPR). Privacy Policy, Cookies Policy and Terms and Conditions can be accessed on the bottom of each page of the HEDGE-IoT website.

Additionally, the HEDGE-IoT website features an accessibility tool, enhancing the viewing and reading experience for individuals with visual impairments or sensitivities to the website's standard layout and colour scheme.

2.2.1.3 HEDGE-IoT Social Media Channels

The most active DC engagement channel was through the **Social Media Channels** created for the project. HEDGE-IoT has a social media presence on five social media networks: LinkedIn¹; X/Twitter²; Facebook³; Instagram⁴ and YouTube⁵.

As of the latest update (30th November 2024), HEDGE-IoT has a total of 656 followers across its five social media networks. Notably, our social media presence continues to exhibit a consistent upward trajectory, predominantly on LinkedIn where HEDGE-IoT page is followed by 599 persons.

HEDGE-IoT's profiles and pages on LinkedIn, X/Twitter, Facebook and Instagram are actively used for two-way communication. The HEDGE-IoT's YouTube channel will be used to promote project activities in the form of videos, webinars, etc.

Project-related news and updates are regularly posted on the HEDGE-IoT social media pages.

⁵ https://www.youtube.com/@HEDGE-loT

¹<u>https://www.linkedin.com/company/101509134/</u>

² <u>https://x.com/HEDGE_IoT</u>

³ https://www.facebook.com/profile.php?id=61564002249880

⁴ <u>https://www.instagram.com/hedge_iot_eu/</u>

In addition, to enhance the reach and influence of the project's events and achievements, partners are encouraged to amplify HEDGE-IoT's social media content by resharing and reposting it, especially when their institution or organisation is featured. This collaborative effort benefits both HEDGE-IoT and the partner's online platforms, generating increased engagement.

Moreover, partners are expected to generate content pertinent to the project's initiatives and distribute it through their communication channels, with a special focus on events and press-related activities. This approach contributes significantly to broader project visibility and dissemination.

• LinkedIn

The LinkedIn page is leveraged for targeting content at very specific industries, policymakers and organisations, all of which are connected through this channel for networking will target audiences. From HEDGE-IoT's perspective, it is a place open to all who are interested in learning about project's opportunities, infrastructure, and future services, sharing opinions, asking questions, and getting more involved with the project.

For now, posts are released once to twice per week throughout the project. Depending on the phase of the project, increasing in frequency might be needed, during phases such as events and results sharing. LinkedIn is sustained by content created by F6S and content provided by the partners.

Figure 1: HEDGE-IoT LinkedIn page

Also important to note that HEDGE-IoT LinkedIn strategy aims for favorable metrics that boost the project's awareness and aims to build relationships with stakeholders. This is being done by implementing social media campaigns that put consortium partners in the spotlight, introducing them and their work to the public.

• X/Twitter

HEDGE-IoT's X/Twitter account serves as another form of communication with the general public and it's being used to further promote the project-related news and activities. Although LinkedIn is

the main social media network encompassing the majority of the HEDGE-IoT followers and audiences, project's X/Twitter account serves as additional tool as it allows us to easily connect with other EU-funded projects and initiatives.

• Facebook

Considering the diversity in age, expertise, geo location of HEDGE-IoT partners, stakeholders as well as the target audience, Facebook was chosen as a "supporting" channel. It provides a more personal approach to the target groups and covering the gap that might occur in case of LinkedIn – where not all the stakeholders have profiles on that network. In addition to Facebook, HEDGE-IoT also uses Instagram as an additional supporting social media channel to share news with the general public.

Figure 3: HEDGE-IoT Facebook page

• YouTube

The HEDGE-IoT YouTube Channel, will play a pivotal role in facilitating communication and disseminating video materials generated by the project. It will be utilised in the upcoming period to promote the videos generated by the HEDGE-IoT demos, project partners, etc.

Figure 4: HEDGE-IoT YouTube channel

2.2.1.3.1 Social Media Campaigns

During Year 1, the HEDGE-IoT's social media campaigns strategy focused on building a wide audience and introducing the project, its objectives and consortium partners to the general public.

1. HEDGE-IoT Objectives Campaign

This was one of the first social media campaigns implemented in the HEDGE-IoT social media channels, which used infographics and illustrations to showcase the project's key pillars and objectives. One example of this campaign can be seen in figure 5 below.

Figure 5: Example of a social media post published in the scope of the "HEDGE-IoT Objectives" campaign

2. "Meet our Partners" Campaign

This initiative aims to spotlight each member of the HEDGE-IoT consortium, offering a deeper insight into their unique contributions and expertise, introducing project to the general public. The campaign follows a structured schedule, featuring one partner on a weekly or bi-weekly basis, aligning with the partner sequence outlined in the Grant Agreement.

To create a post for this campaign, each partner organisation provides key details about their involvement in the project, including:

- Their role in the project: Explaining their specific expertise and the value they bring to HEDGE-IoT.
- Team members: Introducing the individuals working on the project, complete with photos, titles, and their specific roles within both their organization and HEDGE-IoT.
- A highlight of their organisation: A concise statement showcasing what makes their organization unique.
- A quote or statement about the project: Reflecting their perspective on why the project is impactful, what excites them about it, or their expectations for its outcomes.

This campaign not only showcases the diverse expertise within the consortium but also brings a human element to the project, making it more relatable and accessible to the public. An example of the "Meet our Partners" campaign is illustrated in Figure 6 below.

Figure 6: Example of a social media post developed in the scope of "Meet our Partners" campaign

To date, the "Meet our Partners" campaign has successfully highlighted a total of **11 consortium partners**, showcasing their unique roles, expertise, and contributions to the HEDGE-IoT project. This campaign is an ongoing initiative, and its impact will continue to grow as it progresses. Each

partner will have their moment in the spotlight, ensuring that the entire consortium is thoroughly introduced to the public.

The campaign will carry on until every single partner has been featured, celebrating the collective expertise and collaborative spirit driving the success of HEDGE-IoT.

3. "Partners Articles" Campaign

The "Partners Articles" campaign is a cornerstone of HEDGE-IoT's communication and dissemination strategy, designed to foster engagement, share knowledge, and amplify the project's visibility.

This initiative involves publishing monthly articles on the HEDGE-IoT website, with each article written by one of the consortium partners. Covering a diverse range of project-related topics, the articles highlight innovative approaches, share best practices, and explore relevant industry trends. To ensure every partner has the opportunity to contribute, the campaign follows a pre-determined schedule outlined in the Grant Agreement, assigning each partner a specific month to submit their article.

This campaign not only provides valuable content for the HEDGE-IoT website but also fuels our social media presence, helping to maintain a consistent connection with our audience. With 42 partners involved, the campaign spans the project's 42-month duration, offering every partner a chance to showcase their expertise while driving broader awareness of HEDGE-IoT's goals and achievements.

Once written, the article is then published on the project's website (Figure 7) and shared on the HEDGE-IoT social media channels (Figure 8).

Končar Unveils PowerCIM: Enhancing Grid

Figure 7: Example of a website article written by Končar, one of the HEDGE-iot partners in the scope of "Partners Articles" campaign

Figure 8: Example of a social media post promoting the article written by Operato, one of the HEDGE-IoT partners, in the scope of "Partners Articles" campaign

The following table showcases all the partners articles that were developed and published so far.

#	Partner Name	Article Title
1	KONCAR - DIGITAL DOO ZA DIGITALNE USLUGE	Končar Unveils PowerCIM: Enhancing Grid Data Exchange at International CIM Conference
2	INSTITUT JOZEF STEFAN	<u>Maximizing utilization of the transformers using</u> <u>Dynamic Thermal Rating</u>
3	SVEUCILISTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RACUNARSTVA	UNIZG FER Presents The Importance Of HEDGE-IoT Solutions At The MIPRO 2024 Conference
4	OPERATO DOO	<u>From a Centralised Approach to the EDGE – The</u> <u>Evolution of the SUMO Dynamic Rating System</u>
5	ELEKTRO GORENJSKA PODJETJE ZA DISTRIBUCIJO ELEKTRICNE ENERGIJE DD	<u>Smart Asset Management: A Key to Efficient</u> <u>Operations in the Energy Sector</u>
6	ELES DOO SISTEMSKI OPERATER PRENOSNEGA ELEKTROENERGETSKEGA OMREZJA	ELES projects and concepts to accelerate the green energy transition

Table 1: List of all the articles published so far in the scope of "Partners Articles" campaign

4. International Women's Day Campaign

Also, when tailoring and scheduling social media post, important dates were taken into consideration – this allowed us to develop social media campaigns in order to commemorate important dates – such as International Women's Day.

To commemorate International Women's Day on March 8th, the HEDGE-IoT project launched a special social media campaign celebrating the remarkable contributions of the women driving innovation and progress within our consortium. The campaign highlighted the stories, achievements, and insights of these talented individuals, offering a platform to inspire and empower others. Female team members across the consortium were invited to share personal quotes reflecting their motivations, aspirations, or advice for others aspiring to make an impact in the energy and technology sectors. Accompanied by their photos, these quotes answered thought-provoking questions such as their motivations for joining the project and how their work aligns with HEDGE-IoT's broader goals.

The campaign not only celebrated their invaluable contributions but also showcased the diversity and expertise within the HEDGE-IoT team, reinforcing the importance of inclusion and representation in driving meaningful change. These posts were shared on International Women's Day and continued throughout the week, amplifying the voices of the incredible women shaping the future of energy systems. An example of the "International Women's Day" campaign is illustrated in Figure 9 below.

Figure 9: Example of a social media post developed for the "International Women's Day" campaign

2.2.1.4 Other Communication Methods

• Press releases

So far, **1 (one) press release** was developed by the Communication Team and the project coordinator, to inform about the kick-off meeting held in Athens. Other press releases will be generated, about major achievements of the project or any newsworthy items and distributed to both to specialised and general media channels.

All HEDGE-IoT partners will actively collaborate with the press releases dissemination to relevant media in their own countries and regions.

2.2.2 DISSEMINATION ACTIVITIES

Active engagement with HEDGE-IoT's target audiences is pivotal for realising sustained impact and successful dissemination of project outcomes.

HEDGE-IoT will capitalise on its partners' networks and knowledge, leveraging their involvement in various initiatives, ecosystems, platforms, and conferences to reach and sway diverse target groups. Each partner will focus on garnering the interest of target demographics.

Partners will strategise their dissemination activities and, during monthly consortium meetings, will share their achievements relative to their planned endeavours.

2.2.2.1 Scientific Conferences and Events

During the first year of the HEDGE-IoT project, partners actively participated in various international and local conferences, meetings, and events—both virtual and in-person—to disseminate the project's vision and initial achievements while fostering awareness of our activities. These engagements served as a platform to connect with diverse stakeholders, ranging from industry experts to academic researchers, ensuring the project gained visibility and momentum within relevant communities.

The activities undertaken included exhibition stands at industry innovation fairs, participations and contributions to international peer-reviewed conferences. These events facilitated direct interaction with industry professionals, policymakers, and innovators, offering valuable insights and feedback, provided an opportunity to present HEDGE-IoT to key players in the energy and IoT sectors and enabled the exchange of knowledge and the alignment of HEDGE-IoT's innovations with global scientific advancements.

Each partner identified events of strategic importance to the HEDGE-IoT project, focusing on those held in European cities with strong startup ecosystems. This approach ensured that the project's results reached a wide and diverse audience, including innovators, entrepreneurs, and technology adopters.

Some of the events attended by the HEDGE-IoT partners where the project was presented are listed below:

• **MIPRO Conference** – This event is intended primarily for participants from companies and institutions affected by the processes of deregulation of the power sector, i.e. the green transition of the energy sector. System operators, the academic community and industrial partners are preparing for the challenges of the future through various research and development projects. At this seminar, projects from Horizon 2020, Horizon Europe, Digital and CEF were presented. HEDGE-IoT was one of the projects that was presented by our consortium partners UNIZG and HOPS.

Figure 10: Photo of the HEDGE-IoT presentation from the MIPRO conference

- **Arnhem Electricity Week** This event brought together experts to discuss the valuable findings from the InterConnect project and explore how these insights can be applied to the HEDGE-IoT project, which was presented by our consortium partner AB.
- Lisbon Energy Summit recognised as Europe's leading energy transition event, offered a strategic conference that delved into transitioning the EU's energy system to one rooted in renewables. Attendees explored various themes across the exhibition's hydrogen & decarbonisation, climatech, and innovation zones. Here, HEDGE-IoT and its partner projects showcased their solutions and goals aimed at delivering a cleaner, greener energy system. Our consortium partner had a booth at the summit for several projects in the energy domain and HEDGE-IoT was one of them.

Figure 11: Photo from the Lisbon Energy Summit showcasing the booth with the HEDGE-IoT branding

- **IISA 2024** (The Fifteenth International Conference on Information, Intelligence, Systems and Applications) The IISA conference series has become an international forum for researchers and professionals in all areas of Information, Intelligence, Systems and Applications. HEDGE-IoT partner TUC presented a paper regarding task offloading in smart grids.
- ICCP 2024 (2024 IEEE 20th International Conference on Intelligent Computer Communication and Processing) The goal of the 2024 IEEE 20th International Conference on Intelligent Computer Communication and Processing was to bring together researchers,

engineers and practitioners working towards improving the power of both communication and processing software using the most advanced intelligent methods available today. HEDGE-IoT partner TUC has created awareness about the project through the participating sessions.

- **Smart Energy Day 3.0** This event focused on scalable propositions together with innovative entrepreneurs, start-ups and scale-ups. HEDGE-IoT consortium partner AB presented the learning from Interconnect and plans for HEDGE-IoT project.
- ENLIT Europe 2024 Enlit is a high-level energy forum connecting industries, inspiring actions and helping Europe evolve into one decarbonised and digitalised energy system for the energy transition. HEDGE-IoT project was presented at the event with a joint booth with other EU-funded projects (i-STENTORE, WeForming, AGISTIN, EVELIXIA, META BUILD, ENERGATE). HEDGE-IoT team was represented by our consortium partners TRIALOG and NTUA. TNO further represented Hedge-IoT in a panel on energy data spaces organized by the Int:NET project.

Figure 12: Photo of the HEDGE-IoT booth and team at Enlit Europe 2024

• **WEBIT 2024** - organised in Sofia, Bulgaria was an event focused entirely on Innovations and Technology Trends that set the future in the main industries, business and Future of humanity as well as advancements and improvements at global level achieved through technology. HEDGE-IoT was showcased at this event alongside our partner F6S Innovation and their several groundbreaking EU-funded sustainability and technology projects.

Figure 13: Photo of F6S team promoting HEDGE-IoT at WEBIT 2024

This proactive participation highlights the commitment of HEDGE-IoT partners to sharing knowledge, building collaborations, and establishing the project as a leading initiative in energy system digitalization. The following section provides details about the specific conferences and events attended during this period.

2.2.2.2 Targeted Meetings and Initiatives

During the first year of the HEDGE-IoT project, the consortium engaged with EU-funded projects, European clusters, and working groups to foster collaboration and establish meaningful connections. These activities aimed to position HEDGE-IoT within the broader ecosystem of energy and IoT innovation, leveraging synergies to enhance the project's impact and ensure alignment with European strategies and goals. These meetings and activities are fully described in section 5, which is dedicated to the stakeholder engagement activities.

2.2.2.3 Thematic Workshops

HEDGE-IoT partners organised and participated in a number of thematic workshops in the first year of the project's lifetime:

- **Final workshop of DOITSMARTER project** This workshop focused on showcasing the partners' achievements and cost-effective solutions for residential and public buildings. TUC, one of the partners in both DOITSMARTER and HEDGE-IoT projects, presented the HEDGE-IoT project.
- **AIE Workshop** The 2024 International Workshop on Artificial Intelligence and Machine Learning for Energy Transformation (AIE) delved into the cutting-edge applications of AI and ML within contemporary engineering, with a primary focus on the critical domain of energy transformation. HEDGE-IoT partner VTT presented "The Role of Machine Learning Algorithms in Smart Grid Cybersecurity" and the project itself.

• Workshop on Cross-Domain Standardisation and Architecture for IoT and Edge Computing held on 26-27 November in Brussels, Belgium. TRIALOG, one of the HEDGE-IoT partners has represented the HEDGE-IoT project.

2.2.2.4 Publications in Scientific Journals

During the first year of the HEDGE-IoT project, the consortium adhered to the FAIR principles, ensuring all research outputs are findable, accessible, interoperable, and reusable. These principles guided the management of publications and data, aiming to maximize the visibility, impact, and utility of the project's research outcomes.

Key activities in this regard included:

- Assessment of research outputs: The consortium conducted regular evaluations of the project's research outputs to determine the most appropriate type of access, including scientific publications, datasets, or other forms of information dissemination.
- Integration of open science principles: Methodological aspects of open science were incorporated into the planning, management, and monitoring of research under WP1(Project Management and Administration).
- Open-access dissemination: To promote accessibility to the scientific and technological community, HEDGE-IoT prioritized publishing all research papers in fully open-access journals and platforms.
- Outreach to start-ups and SMEs: Particular efforts were made to disseminate knowledge generated by the project to start-ups and SMEs, fostering innovation in the private sector.

The following table outlines the specific publications produced during the first year of the HEDGE-IoT project:

#	PARTNER	TITLE OF THE JOURNAL	PUBLICATION TITLE & LINK
1	тис	SMART CITIES	EDGE OFFLOADING IN SMART GRID
2	TUC	Applied Sciences	DEEP Q-LEARNING-BASED SMART SCHEDULING OF EVS FOR DEMAND RESPONSE IN SMART GRIDS
3	VU	Zenodo	OFFICEGRAPH
4	TUC	BIOMIMETRICS	WHALE OPTIMIZATION FOR CLOUD-EDGE-OFFLOADING DECISION-MAKING FOR SMART GRID SERVICES
5	INESC	COMPUTING SURVEYS	DATABASES IN EDGE AND FOG ENVIRONMENTS: A SURVEY
6	IDSA	Zenodo	MAKING THE DATASPACE PROTOCOL AN

			INTERNATIONAL STANDARD
7	TAU	Applied Energy	MARKET INTEGRATION AND TSO-DSO COORDINATION FOR VIABLE MARKET-BASED CONGESTION MANAGEMENT IN POWER SYSTEMS

Table 2: Summary of the Hedge-IoT Publications published until M12

2.3 MONITORING AND IMPACT

Monitoring has been carried out continuously and systematically during the project, not only to ensure that the project gathers the sufficient a relevant data and insights from the project implementation but also to help assess whether the Dissemination and Communication activities were carried out properly and successfully.

Several methods have been used so far:

- Excel file, shared with all the partners, to monitor and track the most relevant CD KPIs: scientific publications, participation in events, communication activities carried out, etc.
- Email exchange to collect inputs from project's partners
- Document and correspondent folder to plan and archive of Social media posts (Figure 6), serving as a central resource, containing essential details such as draft descriptions of social media posts, their scheduled posting dates, and whether the posts have been prescheduled.

Figure 14: Snippets of a Word document used for planning and scheduling social media posts for the HEDGE-IoT social media networks

2.3.1 KPIS AND DC INDICATORS

Communication and Dissemination KPIs are well defined both in the Grant Agreement and in the DC Plan. Progress has been made in the majority of these indicators, and more is expected in the months to come.

Table 3 shows the progress in KPIs so far:

Түре	Examples	TARGET	Progress Year 1
COMMUNICATION ACTIVI	TIES		
Project website	Reports announcements, photos, news and links to downloads. An overall editorial plan, including the website, special articles and interviews.	1	1
Social media	Strictly authorised discussions/exchanges with online communities (LinkedIn, Twitter)	> 500	100
Brochure	Electronic and hard copies of the project brochure comprehending a general overview of the project, its challenges and expected impacts	4	1
Posters	A set of posters will be designed and printed to exhibit at partners' premises and use at events where the project takes presence.	> 4	1
Institutional presentation	Project Presentation will be created at the beginning of the project, containing basic information about the project (activities, objectives, partnerships, events).	1	1
Trial videos	A set of videos will be orchestrated, describing the trials of HEDGE-IoT, their scope and the HEDGE-IoT technologies tested and evaluated.	>=4	0
Infographics	Production of infographics to show the results in a clear and simple way. It is foreseen that during the project implementation phase, 10 infographics presenting various outcomes will be produced.	10	0
Banner	An attractive large size banner and one stand-up presenting a general image of the project aiming to capture a first interest/attention.	1+1	1 (Roll-up)
Final Publishable Report	A Final Publishable Report will be developed to summarise the project's objectives, activities, and achievements. This report will be result-oriented, it will present the tangible results of the project, lessons learnt, and impacts achieved, to convince and guide other regions and countries to engage in similar actions.	1	0
Articles	Tailor-made articles and interviews for publications and other targeted media channels (e.g. EC newsletters, specialised national magazines etc.). Focus will be on IoT- Cloud/Edge technologies and integration of such systems and trial results of AI/ML.	>=5	2
Newsletter	Periodic newsletters development, publication, and distribution to all the participating partners, conference attendees, website visitors, and other perceived stakeholders.	>4	0
Press releases	Press releases will be issued to specialised and general media channels at key project milestones (kick-off, major achievements, etc.). A press/media kit will be developed containing detailed press releases, videos (e.g. of project demos), publishable images from the project, few short papers (devoted to some key theme/topic of the project).	>= 2	1
Talks in workshops	Invited talks in workshops and international events of reference as to communicate the project experimentation platform and solutions.	On invite	3
Innovation Events	Events in European cities with strong start-up community	>=1	0
Market Uptake	Market Uptake Launch-Event, with guided presentation of selected results.	>=1	0

Түре	Examples	TARGET	Progress Year 1
DISSEMINATION ACTIVITIES			
Exhibition stands in	BILT Europe (Digital Built Week Europe); European Sustainable Energy Week; ENLIT Europe; IDSA	> 5	3
industry innovation fairs	conferences; IoT conferences		
Publication in international	Applied Energy; Energy; Energy Policy; IEEE Transactions on Smart Grid; IEEE Transactions on Power	> 15	7
journals and magazines	Systems; IEEE Transactions on Power Delivery, Energy Policy; IEEE Transactions on Industrial Informatics		
Contributions in	IEEE Innovative Smart Grid Technologies; Power Systems Computation Conference; IEEE Power and	> 10	3
international peer-	Energy Society for Innovative Smart Grid Technologies Conference; Conference on European Energy		
reviewed conferences	Market		
Thematic Workshops	Organisation of dedicated workshops to engage specific target groups.	>= 4	2
Cluster of European	DG Energy, BRIDGE WGs; AIOTI; European Energy Alliance Task Forces; IDSA General Conferences; ETIP	> 20	8
projects and other	SNET, European Smart Grid Technology Platform, WG4 Digitisation, FIWARE Summit.		
initiatives			
Meetings with policy	Meetings with regional/national data and energy policy-makers and regulators.	> 6	0
makers			
Targeted Meetings with	Participation in industrial and trade events; press releases and articles in specialised trade newspapers &	>5	0
industry and society	magazines; Organising focused workshops and public relations events, and inviting European/ international community		

Table 3: Communication and Dissemination KPIs

2.4 STRATEGY FOR YEAR 2

In the second year of the HEDGE-IoT project, dissemination and communication activities will build upon the foundation established in the first year while expanding our efforts to align with the project's progress and growing visibility.

We will continue implementing well-thought-out campaigns to achieve digital and social mediarelated KPIs. The "Meet Our Partners" and "Partners Articles" campaigns will remain central to our strategy, offering engaging insights into consortium members, their expertise, and their contributions to the project. Additionally, greater emphasis will be placed on promoting scientific publications, partner activities, and initial results generated by the consortium, showcasing the project's impact and achievements to both the scientific community and industry stakeholders.

Dissemination and Communication efforts will continue to balance raising general public awareness with targeting specific audiences and stakeholders who can benefit from HEDGE-IoT outcomes but are not directly involved in the project. These efforts will involve communicating early results in a way that resonates with these groups, helping to foster understanding of the project and the innovative technologies being developed. Plus, it will allow for a full perception of the project and its outcomes within the industry.

In Year 2, specific emphasis will be given to the launching, promotion and communication of the Open Calls and related activities, such as webinars, info days, etc.

To achieve these goals, WP7 will maintain close coordination with other WP leaders to ensure timely and effective communication of results and milestones. It will closely follow the technical developments to ensure the open dissemination of knowledge and technology, by enforcing the HEDGE-IoT consortium's determination to open access publishing, open-source code and designs, open data, and open models. Activities will include leveraging social media to promote projectrelated events, scientific contributions, and new publications, ensuring the steady visibility of HEDGE-IoT in the digital space.

3 EXPLOITATION AND MARKET EXPLORATION

3.1 STRATEGY FOR YEAR 1

In the first year of the HEDGE-IoT project, the exploitation strategy focused on establishing a strong foundation for the short and long-term utilisation of project results.

The primary objective was to ensure that the technical developments align with market demands, regulatory requirements, and societal needs. By doing so, the project's outcomes aim to deliver measurable impact, commercial value, and widespread adoption.

The approach combined robust identification of exploitable results, stakeholder engagement, intellectual property management, and targeted market research.

3.1.1 COMPREHENSIVE KER IDENTIFICATION AND ANALYSIS

The identification and analysis of Key Exploitable Results (KERs) during Year 1 constituted a highly collaborative effort, emphasising the synergies between consortium partners and their combined expertise. Each partner had to contribute their distinct knowledge and capabilities to define individual KERs, while collectively exploring opportunities for integration and mutual exploitation. This collaborative approach ensured that the project's outcomes aligned with diverse market requirements and stakeholders' expectations, as delineated in the Grant Agreement and Deliverable 7.2.

A primary objective was to assess the market relevance of each KER to ensure their applicability to critical challenges in the energy and IoT sectors. Specifically, the project focused on areas such as grid resilience, renewable energy integration, and AI-enabled optimisation of energy systems. The partnership underscored the necessity for solutions that address both technical and operational challenges, including real-time data analysis, interoperability of systems, and enhanced decision-making capabilities for Transmission System Operators (TSOs) and Distribution System Operators (DSOs). This emphasis on practical, market-driven solutions enhanced the overall value proposition of HEDGE-IoT's outputs.

Mapping KERs to the needs of stakeholders was a central component of this strategy. The consortium prioritised engaging energy providers, TSOs, DSOs, and their partners to ensure that the project's outcomes would meet real-world requirements. This mapping process not only guided the prioritization of KERs for individual and joint exploitation efforts but also ensured alignment with regional and local needs across the six pilot sites. Additionally, partnerships with standardisation bodies, such as AIOTI and ETSI for SAREF, were initiated to promote interoperability and enhance market readiness for HEDGE-IoT technologies.

By fostering collaboration across partners, focusing on market-driven innovation, addressing potential risks, and engaging stakeholders, the consortium established a robust foundation for the effective exploitation of project results. This approach positions HEDGE-IoT to deliver impactful and scalable solutions in subsequent phases of the project.

The risks associated with the development and deployment of these KERs were systematically evaluated. Deliverable 7.2 identified potential barriers, including the regulatory complexity of the energy sector, the interoperability challenges of integrating IoT solutions across heterogeneous systems, and uncertainties in market adoption rates. To mitigate these risks, the consortium developed strategies such as fostering early stakeholder engagement, aligning solutions with existing industry standards, and conducting scalability assessments at pilot sites.

3.1.2 STAKEHOLDER-CENTRIC APPROACH

Continuous collaboration among stakeholders is crucial for the success and longevity of the project. Ongoing engagement ensures that all parties remain aligned with the project's objectives, to address challenges promptly, and to adapt to changing circumstances or requirements. By fostering an environment of open communication and shared responsibility, stakeholders leverage their diverse expertise and resources to drive the project forward effectively. Moreover, this collaborative approach extends beyond the project's immediate timeline, facilitating the seamless transition from development to implementation and long-term sustainability.

In the first year of the project, the exploitation strategy encompassed several key components designed to maximise the project's impact and ensure its widespread adoption. By forging partnerships with industry bodies and policy groups, the project will gain valuable insights, access to resources, and potential avenues for implementation. Targeted outreach to pilot site stakeholders is essential for tailoring the solution to local needs and contexts, thereby increasing its relevance and effectiveness.

Additionally, establishing connections with standardisation organisations like ETSI and AlOTI is a proactive step towards ensuring the interoperability of IoT solutions. This focus on standardisation not only enhances the project's compatibility with existing systems but also positions it for broader integration and scalability in the future, potentially influencing industry-wide practices.

3.1.3 PREPARATION OF IPR FRAMEWORK

During its initial year, the HEDGE-IoT project developed an Intellectual Property Rights (IPR) framework. This framework was designed for utilising the project's outcomes. As the HEDGE-IoT project progresses, the IPR framework is anticipated to evolve, incorporating advanced features to address the complexities of IP management, exploitation, and commercialisation, while ensuring adherence to the GA and Consortium Agreement terms. The framework's establishment was of a strategic necessity, offering the essential structure to enable effective utilisation of KERs in later project stages.

The framework's main purpose is to establish clear ownership and accountability for intellectual property among consortium members. It outlines detailed guidelines for assigning ownership of project results based on each partner's input, as stipulated in the GA. The framework's approach ensures clear delineation of IP arising from collaborative efforts, such as jointly developed algorithms or methodologies, to prevent future disputes among consortium organisations. The

framework also provides initial strategies for managing individual KERs, including tools, technologies, or datasets independently developed by specific partners.

Another crucial aspect of the IPR Framework is the definition of mechanisms for protecting innovations. The framework includes guidelines for evaluating whether project's outcomes that fall under the scope of an innovation should be safeguarded through patents, copyrights, or other formal IP instruments. For instance, technical innovations demonstrating substantial commercial potential were identified as prospective subjects for patent protection, pending a thorough assessment of their eligibility under applicable intellectual property laws and the strategic objectives of the consortium.

The framework also offers preliminary considerations for open-source contributions, ensuring that any open-access releases would align with the project's exploitation objectives while maintaining proper credit to contributing partners.

The framework has been developed in strict conformity with the regulatory and contractual obligations prescribed under the GA and the Consortium Agreement, ensuring full compliance with the European Union's IP management standards, particularly those applicable to Horizon Europe projects. Moreover, it anticipates and addresses potential complexities inherent in the regulatory frameworks governing the energy and IoT sectors, thereby providing a structured and legally sound foundation for the efficient and compliant administration of intellectual property moving forward.

Although the framework does not encompass the implementation of licensing agreements, commercialisation strategies, or patent filings, it establishes a structured and systematic foundation for assessing and developing these opportunities as the project progresses. Its formulation was informed by initial consultations with consortium partners to harmonise expectations and ensure the framework effectively addresses the collective and individual interests of all project stakeholders.

The IPR framework as developed in Year 1 has established a clear foundation for managing and protecting the intellectual property generated within HEDGE-IoT. It provided the necessary structure to guide the project's future exploitation efforts, ensuring that all innovations are well-positioned for impactful and sustainable utilisation in the energy and IoT sectors. The framework will evolve in later stages of the project as specific results mature and become ready for commercial or collaborative exploitation.

3.1.4 MARKET EXPLORATION

The preliminary market exploration highlighted the increasing reliance on IoT and AI solutions for optimising energy systems, particularly in addressing challenges such as renewable energy integration, distributed energy resource management, and real-time grid operations. The findings underscored the relevance of HEDGE-IoT technologies, specifically in delivering scalable and secure solutions tailored to the evolving needs of the sector.

The exploration emphasized the demand for tools that overcome interoperability challenges and facilitate the integration of diverse energy systems. While IoT-enabled solutions are widely

available, gaps persist in advanced, Al-driven platforms designed for decentralised architectures. HEDGE-IoT's focus on edge computing and federated learning positions uniquely address these challenges and meet market needs effectively.

Insights from the project's pilot sites highlighted the importance of tailoring solutions to regional market and regulatory conditions. In regions with high renewable energy adoption, the priority lies in enhancing grid resilience and integrating DERs, while in emerging markets, the focus is on affordable and scalable IoT solutions. This localized approach ensures that HEDGE-IoT technologies align with specific infrastructure needs and regulatory frameworks.

3.2 ACTIVITIES IMPLEMENTED IN YEAR 1

During its first year, the HEDGE-IoT project efforts concentrated on creating robust groundwork for leveraging, circulating, and standardising its preliminary developments. These endeavors, in line with Deliverable 7.2, were vital to ensure the project's objectives will address societal requirements, market needs, and stakeholder anticipations.

A significant accomplishment was the joint identification of KERs. Project partners collaborated to outline their expected outcomes. Even though the project is yet in a very early stage and the partners have not yet constructed a clear and precise exploitation plan, each partner submitted their specific exploitation plans, target audiences, and anticipated impacts, reflecting the collaborative approach of the project. The submitted tables are presented in the ANNEX. For example, partners emphasised IoT solutions and edge intelligence (KER#1) for improving grid resilience and real-time management, while tools like the service orchestration(KER#2) were aimed to optimising computation resource sharing between cloud and edge systems. The plan also showcases preliminary strategies for synergies with other HEDGE-IoT partners and EU initiatives, showcasing efforts to integrate AI/ML tools (KER#3), develop open app repositories (KER#5), and advance interoperable data governance solutions (KER#7). Partners identified market barriers, such as cost sensitivity and interoperability challenges, alongside strategies for overcoming these through pilot demonstrations, licensing, and collaborative frameworks, these inputs underscore the strategic alignment of KERs with market and stakeholder needs and also establishes an initial path for their future exploitation and scalability.

One of the key achievements was the development of stakeholder engagement activities to promote future joint exploitation of the project's results. HEDGE-IoT engaged in activities through platforms such as the BRIDGE initiative and collaborations with related projects like ODEON. Moreover, the Kick-off and General Assembly meeting served as a forum for project-wide collaboration and updates, promoting communication and ensuring all partners were united in their goals. The participation in those events ensure alignment with industry practices, regulatory frameworks, and stakeholder expectations.

3.3 STRATEGY FOR YEAR 2

The second year of HEDGE-IoT will emphasize scaling the exploitation efforts and transitioning from foundational activities to more targeted actions.

3.3.1 ADVANCING KER EXPLOITATION

Each consortium partner in the first year of HEDGE-IoT developed preliminary plans for their respective KERs. In the same direction, moving forward each partner will further improve their individual KERs including business models tailored to specific markets, technical development roadmaps for scaling and possible licensing and collaboration frameworks. Partners will seek joint exploitation opportunities by leveraging synergies among partners to co-develop solutions, especially in areas like IoT standardization and interoperability.

3.3.2 ENHANCING STAKEHOLDER COLLABORATION

In the context of the HEDGE-IoT project, stakeholder collaboration is a cornerstone for ensuring the successful exploitation and sustainability of the project's outcomes. By engaging a diverse range of stakeholders—spanning energy providers, grid operators, standardization organizations, venture capitalists, and industrial alliances—the project seeks to build a robust ecosystem that supports the seamless adoption and scaling of its innovations. These collaborations are not only vital for aligning the project's technological advancements with market and regulatory needs but also for fostering trust, inclusivity, and a shared commitment to the digital transformation of the energy sector. Stakeholder engagement efforts are designed to create iterative feedback loops, where stakeholder insights refine and enhance project outputs while fostering early buy-in from key market players.

To deepen these partnerships, the following actions will be prioritised:

- Strengthening Industry Relationships: Engaging with energy providers and grid operators to showcase the potential of HEDGE-IoT solutions in addressing real-world challenges such as grid resilience, energy efficiency, and renewable energy integration. These discussions will focus on collaborative pilot projects, tailored use cases, and mutual learning opportunities.
- **Facilitating Knowledge Exchange through Workshops:** Organizing targeted workshops and knowledge-sharing events at regional levels to present findings from the six pilot sites. These events provide a platform for stakeholders to review pilot results, share insights, and offer feedback on the replicability and scalability of HEDGE-IoT solutions.
- **Engaging Stakeholders through General Assembly Meetings:** GAs can have a pivotal effect for advancing the project's exploitation efforts and ensuring strategic alignment. Partners will establish a unified focus on aligning technical developments, pilot activities, and stakeholder engagement with market needs and will evaluate early pilot outcomes, refine the exploitation roadmap, and emphasize scalability and market impact.

These efforts are instrumental in ensuring that HEDGE-IoT outcomes are not only technically robust but also aligned with the needs and expectations of the broader energy ecosystem, paving the way for impactful and sustainable exploitation.

3.3.3 MARKET ANALYSIS

The HEDGE-IoT project is uniquely positioned at the convergence of IoT and energy markets, both of which are experiencing rapid growth and innovation. Below an updated market analysis is presented, enriched with quantitative insights to contextualize the project's opportunities and potential impacts.

- IoT adoption in the EU has been steadily growing, with 29% of enterprises utilizing IoT technologies in 2021⁶. Among these, 30% employed IoT for energy consumption management, such as through smart meters and smart thermostats. The adoption of IoT for energy management was particularly prominent in the accommodation sector (48%) and real estate activities (45%). Geographically, Austria Ied with over 50% of enterprises employing IoT solutions, followed by Slovenia (49%), Finland, and Sweden (both 40%). Conversely, Iower adoption rates were observed in Romania (11%), Bulgaria (15%), and Estonia (17%).⁷
- The EU has demonstrated a strong commitment to integrating AI into various sectors, including energy. In 2020, investments in AI ranged between €12.7 billion and €16 billion, reflecting a growth rate of 20-28% from the previous year. This investment trajectory aligns with the EU's objective to reach €20 billion in annual AI investments by 2030.⁸ AI applications in energy management encompass predictive maintenance, fault detection, and energy demand forecasting, all aimed at enhancing the performance and reliability of energy infrastructure.⁹
- The EU is actively pursuing the digital transformation of its energy systems to improve efficiency and sustainability. The "Digitalization of the energy system" action plan outlines key initiatives, including the establishment of the Smart Energy Expert Group (SEEG) to guide the sustainable digital transformation of the energy sector.¹⁰ Additionally, the EU's energy statistical pocketbook indicates that the share of renewable energy in the energy mix rose to 25% in 2022, up from 19% in 2021, underscoring the progress in integrating digital solutions to support renewable energy adoption.¹¹
- The EU's regulatory framework is conducive to the digitalization of the energy sector. The "Digitalization of the energy system" action plan emphasizes the development and deployment of smart energy solutions aligned with the goals of the twin green and digital transition. Furthermore, the EU energy statistical pocketbook provides comprehensive data

⁹ https://ses.jrc.ec.europa.eu/ai-and-energy-sector

¹¹ https://energy.ec.europa.eu/news/eu-energy-figures-statistical-data-eu-energy-sector-2024-10-14_en

⁶ https://www.eca.europa.eu/en/publications?ref=sr-2024-08

⁷ https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20220609-1

⁸ https://ai-watch.ec.europa.eu/publications/ai-watch-estimating-ai-investments-european-union_en

¹⁰ https://energy.ec.europa.eu/topics/energy-systems-integration/digitalisation-energy-system_en

to inform policy decisions, highlighting the increasing share of renewable energy in the energy mix.

The convergence of IoT and AI within the EU's energy sector presents a fertile landscape for the HEDGE-IoT project. With robust investments, supportive regulatory frameworks, and a clear trajectory toward digitalization and sustainability, the project is well-positioned to contribute to and benefit from the ongoing transformation of Europe's energy systems.

This and other themes will be further detailed and developed during Year 2.

4 **STANDARDIZATION**

Standardization is one of the pillars of HEDGE-IoT. The project has two main objectives on this topic. Firstly, to make sure that the project is aligned with already published and/or currently under development standards. Secondly, to contribute to new standardization activities based on project results. For this, the project will identify the relevant results and patterns that respond to actual needs and create have added value for stakeholders in the standardization ecosystem.

The implementation of standardization-related activities has not yet started, as this task is foreseen to be initiated on M12. This chapter outlines the high-level strategic approach for standardization for the project lifespan.

4.1 STRATEGY

The strategy of HEDGE-IoT will be driven by partners with extensive experience in standardization, actively contributing to and often leading initiatives in this area. The main idea behind the HEDGE-IoT strategy is to start working on standardization in early stages of the project to integrate this aspect into each task and ensure proper contributions. Hedge-IoT partners were already deeply involved in standardization efforts before the project began and will remain engaged afterwards.

Hedge-IoT strategy to make sure that the project is aligned with standardization could be split into the following two main elements:

- Identification of the relevant standards and standardization groups will be achieved at the beginning of the task. The selected standards will be then linked to the corresponding tasks of the projects to ensure alignment when possible.
- **Continuous alignment with standardization all along the project**. Follow standardization activities, new standardization projects as well as project activities to identify alignment needs. Keep track of the partners' involvement and their contribution.

Hedge-IoT strategy to contribute to standardization based on project results could be split into the following elements:

- For each project results, identify what could be the contribution to standardization could be as well as the relevant Standardization Developing Organizations (SDOs). To achieve this, it is important to identify small modules also called patterns which are relevant for contributing to standardization. A pattern is a characteristic arrangement of modules, recognized as good practice for solving a problem. It describes a generic solution that can be reused.
- While contributing to standards development, disseminate project results when it is relevant to support the content.

4.2 TARGETED SUBJECTS AND GROUPS

HEDGE-IoT scope is very large in terms of technical subjects. The following ecosystems were identified as relevant:

- Energy and Smart Grid
- Artificial intelligence
- Edge/cloud computing
- Data spaces
- Interoperability
- Data
- IoT
- Digital twin
- Privacy
- Security
- Trustworthiness
- Architecture

Here is the first list of standardization groups to be targeted:

- CEN-CENELEC JTC21 Artificial Intelligence
- CEN-CENELEC-ETSI CG (Coordination Group) on SG (Smart Grids)
- IEC SyC (System Committee) Smart Energy
- ISO/IEC JTC1 SC27 Information security, cybersecurity and privacy protection
- ISO/IEC JTC1 SC42 Artificial Intelligence
- ISO/IEC JTC1 SC41 Internet of Things and digital twin
- ISO/IEC JTC1 SC32 Data management and interchange
- ISO/IEC JTC 1 SC 7 Software and systems engineering
- ISO/IEC JTC1 SC38 Cloud computing and distributed platforms
- ETSI SmartM2M (Smart Machine-to-Machine Communications)
- BRIDGE Standards user group
- ISO/IEC JTC 1 WG 13 Trustworthiness

This list is not exhaustive and will be updated throughout the project based on the HEDGE-IoT scope and results.

4.3 STANDARDS OVERVIEW BY TOPICS

The following Figure 15: , Figure 16: Standardization Perspective on Privacy (created and presented by Antonio Kung(Trialog) to a DIM meeting), $\Sigma \phi \dot{\alpha} \lambda \mu a!$ To $\alpha \rho \chi \epsilon i \sigma \pi \rho o \dot{\epsilon} \lambda \epsilon \upsilon \sigma \eta \varsigma \tau \eta \varsigma \alpha \nu \alpha \phi \rho \rho \dot{\alpha} \varsigma \delta \epsilon \upsilon \sigma \eta \varsigma \tau \eta \varsigma \alpha \nu \alpha \phi \rho \rho \dot{\alpha} \varsigma \delta \epsilon \upsilon \sigma \eta \varsigma \tau \eta \varsigma \alpha \nu \alpha \phi \rho \rho \dot{\alpha} \varsigma \delta \epsilon \upsilon \sigma \eta \varsigma \tau \eta \varsigma \alpha \nu \alpha \phi \rho \rho \dot{\alpha} \varsigma \delta \epsilon \upsilon \sigma \eta \varsigma \tau \eta \varsigma \alpha \nu \alpha \phi \rho \rho \dot{\alpha} \varsigma \delta \epsilon \upsilon \sigma \eta \varsigma \tau \eta \varsigma \alpha \nu \alpha \phi \rho \rho \dot{\alpha} \varsigma \delta \epsilon \upsilon \sigma \eta \varsigma \tau \eta \varsigma \alpha \nu \alpha \phi \rho \rho \dot{\alpha} \varsigma \delta \epsilon \upsilon \sigma \eta \varsigma \tau \eta \varsigma \alpha \nu \alpha \phi \rho \rho \dot{\alpha} \varsigma \delta \epsilon \upsilon \sigma \eta \varsigma \tau \eta \varsigma \alpha \nu \alpha \phi \rho \rho \dot{\alpha} \varsigma \delta \epsilon \upsilon \sigma \eta \varsigma \tau \eta \varsigma \alpha \nu \alpha \phi \rho \rho \dot{\alpha} \varsigma \delta \epsilon \upsilon \sigma \eta \varsigma \tau \eta \varsigma \alpha \nu \alpha \phi \rho \rho \dot{\alpha} \varsigma \delta \epsilon \upsilon \sigma \eta \varsigma \tau \eta \varsigma \alpha \nu \alpha \phi \rho \rho \dot{\alpha} \varsigma \delta \epsilon \upsilon \sigma \eta \varsigma \tau \eta \varsigma \alpha \nu \alpha \phi \rho \rho \dot{\alpha} \varsigma \delta \epsilon \upsilon \sigma \eta \varsigma \tau \eta \varsigma \alpha \nu \sigma \rho \sigma \eta \varsigma \sigma \eta \varsigma$

Figure 15: Standardization Perspective on Data Ecosystem (created and presented by Antonio Kung (Trialog) to a DIM meeting)

HEDGE-IOT

Under development

Final draft or published

Figure 16: Standardization Perspective on Privacy (created and presented by Antonio Kung (Trialog) to a DIM meeting)

SC42 projects, August 2024 - (Green = published, Orange >= CD, Light Red < CD, Red = PWI, NP)

22989:2022 Al Concepts and terminology	23053:2022 Framework of Al systems using ML	5259-1,3,4 Data quality for analytics and machine learning	8183:2023 Data life cycle framework	TR 5469:2024 Functional safety and Al systems	TS 8200:2024 Controllability of automated artificial intelligence systems	23894:2023 Guidance on risk management	5338:2023 Al system lifecycle process	TS 4213:2022 Assessment of ML classification performance	5392:2024 Ref. architecture of knowledge engineering	JWG1 38507:2022 Governance implications of the use of Al	
42001 2023 Al management System		20546:2019 Big data vocabulary	20547-1,2,3,5 Big data Reference Architecture	TR 24027:2021 Bias in Al systems and Al aided decision making	TR 24028:2020 Overview of trustworthiness in artificial intelligence	TR 24029–1,2:21/23 Assessment of robustness of neural networks	5339:2024 Guidance for Al applications	TR 17903:2024 Overview of machine leaming computing devices	TR 24372:2021 Overview of computational approaches		
		24668:2022 Process mgt framework for big data analytics		TR 24368:2022 Overview of ethical and societal concerns	TS 25058:2024 Guidance for quality evaluation of Al systems	25059:2023 Quality model for Al systems	TR 24030 Ed2:2024 Al use cases				
42005 Al system Impact Assessment	42006 Req. for bodies providing audit & certification of AIMS	5259-2,5 Data quality for analytics and machine learning		TS 6254 Explainability of ML models and Al systems	12791 Treatment of unwanted bias in classification and regression ML tasks	12792 Transparency taxonomy of Al systems	TR 20226 Environmental sustainability aspect os Al			JWG2 TS 17847 Verification and validation of Al systems	JWG2 TS 29119-11 Testing for Al systems
				TS 22443 guidance societal concerns and ethical considerations	25029 Al-enhanced nudging (started in CEN- CLC JTC21)	25059 Ed2 Quality model for Al systems	TR 21221 Beneficial Al systems				
22989 AMD1 Al Concepts and terminology	23053 AMD1 Framework of Al systems using ML	TR 42103 Overview of synthetic data		TR 24029-3 Assessment robustness NN – statistical methods			TR 42109 Use cases of human- machine teaming	TS 4213 Performanœ measurement	TS 25258 Hybrid Al inference framework	JWG3 TR 18988 Application of Al technologies in health informatics	JWG3 22989-2 Concepts and terminology — Part 2: Healthcare
24970 Al system logging	42102 Taxonomy of Al system methods and capabilities			TR 42105 Guidance for human oversight	TR 42106 Benchmarking of Al system quality characteristics			TS 42111 Guidance on lightweight systems	TS 42112 ML model training efficiency optimization	JWG4 22440-1,2,3 Functional safety and AI systems	JWG4 TS 25223 Guidance uncertainty quantification in Al
Foundationals	standards WG1	Data	WG2	т	rustworthiness WG	13	Use cases and apps WG4	Computational a	approaches WG5	JWG5 TR 23281 Overview AI tasks and functionalities related to NLP	JWG5 23282 Evaluation methods for accurate NLP
	1										
PWI 42114 Guidelines for Al management system auditing		PWI 42116 Framework for use of generated data for analytics and ML	PWI 47559 De- identification of training data for ML	PWI 17866 Guidance ethical and societal concerns	PWI 18966 Oversight of Al systems	PWI 24029-5 Assessment of robustness of NN - other AI algorithms	PWI 42113 Evaluation metrics for AI use cases and application	PWI 18966 guidance oversight of AI systems	PWI 42107 Al lightweight modelling	Joint work JWG1 Governand	ing groups the implications of Al
				PWI 42108 ODD for Al systems	PWI 42117 Trustworthiness Fact Labels for Al systems	PWI 42118 Reliability of Al systems				JWG3 AI enabled JWG4 Function JWG5 Natural Iar	I health informatics al Safety and Al aguage processing

Figure 17: Standardization Perspective on AI (prepared by Antonio Kung (Trialog) in the context of the SC27 and SC42 liaison)

This project has received funding from the European Union's Horizon Europe research and innovation programme under the Grant Agreement number 101136216. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Climate, Infrastructure and Environment Executive Agency. Neither the European Union nor the eiranting authority can be held responsible for them.

Trustworthiness related projects, March 2024 (Green = published, Orange >= CD, Light Red < CD, Red = PWI, NP)

250xx Systems and software quality requirements and evaluation	TS 5723:2022 Trustworthiness vocabulary	30147:2021 Trustworthiness in lifecycle process	TR 27563:2023 Security and privacy in AI use cases	TR 6114:2023 Security considerations throughout the product life cycle		TR 5469:2024 Functional safety and AI systems	23894:2023 Guidance on risk management	TR 24027:2021 Bias in Al systems and Al aided decision making	TR 24028:2020 Overview of trustworthiness in Artificial Intelligence		
		30149:2024 IoT Trustworthiness principles		_		TR 24029 –1, 2: 2021-23 Assessment of robustness of neural networks	TR 24368:2022 Overview of ethical and societal concerns	25059:2023 Quality model for Al systems			
9837 System resilience		30187 IoT system indicators	27090 Security threats and failures in Al systems			TS 6254 Explainability of ML models and AI systems	TS 8200 Controllability of automated AI systems	12791 Treatment of unwanted bias in classification and regression ML tasks	42005 Al system impact assessment		
				-		12792 Transparency taxonomy of Al systems	TS 25058 Guidance for quality evaluation of Al systems				
42042 Reference Architecture	31303 Trustworthiness - Overview and concepts		27091 Artificial intellgence - Privacy protection	5181 Data provenance	TS 27115 Cybersecurity evaluation of complex systems	TR 21221 Beneficial Al systems	TR 22440 Functional safety and AI systems - Requirements	TS 22443 guidance societal concerns and ethical considerations	TR 24029-3 Assessment robustness NN - methodology	TR 11034 Trustworthiness of cloud services	AI Trustworthiness framework
						TS 25058 SQuaRE quality evaluation	TR 42105 Guidance for human oversight	TR 42106 Benchmarking of Al system quality characteristics			
	18149 Trustworthiness ontology		6109 Guidelines for data security monitoring	7709 Security and privacy for multisourced data processing	25240 Evaluation of Al- based technology	18966 Oversitght of Al systems	42108 Domain and operating conditions	Trustworthy Al systems evaluation criteria			
			22080 Cybersecurity of UAS		27116 Support for customised and multi purpose evaluation						
JTC 1/SC 7 System engineering	JTC 1/WG 13 Trustworthiness	JTC 1/SC 41 IoT and digital twin		JTC 1/SC 27 Cybersecurity and privacy			JTC 1 Arti Intelli	/SC 42 ficial gence		JTC 1/SC 38 Cloud computing	JTC 21 Artificial Intelligence

Figure 18: Standardization Perspective on Trustworthiness (prepared by Antonio King (Trialog) in the context of a standardization meeting)

5 COMMUNITY BUILDING AND STAKEHOLDER ENGAGEMENT

This section outlines the community-building and stakeholder engagement strategies and activities undertaken by the HEDGE-IoT project during its first year, including plans for the upcoming year. These efforts aim to foster collaboration, knowledge sharing, and alignment with other projects and initiatives, thereby strengthening the European ecosystem for energy and IoT innovation.

5.1 STRATEGY FOR YEAR 1

The primary strategy for Year 1 included mainly the identification of the focus pillars identifying and engaging with relevant projects and European initiatives aligned with the goals of HEDGE-IoT. Key elements included:

- **Collaborating with ODEON:** Leveraging ODEON's innovations in decentralized energy systems and edge intelligence, including its Cloud-Edge Data and Intelligence Platform and P2P energy trading solutions, to align efforts on federated energy ecosystems. ODEON is the sister project of HEDGE-IoT. Both projects were funded under the same call.
- **Participating in the BRIDGE Initiative:** Engaging in Working Groups (WGs) to align with best practices in data management, regulatory frameworks, customer engagement, and business models for IoT-enabled energy systems.
- **Engaging with AIOTI:** Aligning HEDGE-IoT's efforts with AIOTI's Reference Architecture and standards for security, interoperability, and scalability in IoT deployments.
- Integration with CEEDS Projects: Collaborating with projects such as Int:NET, OMEGA-X, and Enershare to develop federated energy data spaces that support secure data sharing and stakeholder empowerment.
- **Collaborating with MetaOS for the Edge Projects:** Engaging with projects like Nemo, AerOS, and Nephele to explore advanced orchestration tools and edge computing solutions for scalable IoT systems.
- **Engaging with Swarm Projects:** Connecting with initiatives like OASEES and OpenSwarm to adopt decentralized programmability and real-time network optimization for collaborative loT systems.
- **Participating in CSAs:** Collaborating with CSAs such as UNLOCK-CEI and Open Continuum to support cloud-edge-IoT integration, enhancing market readiness and interoperability.
- Aligning with CEF Digital ODPs and collaborating with the TEF for the energy sector: Identifying synergies in retrofitting energy infrastructures with digital capabilities to support scalable and secure IoT systems. HEDGE-IoT will liaise with TEF projects in order to exploit the knowledge generated.
- **Creating TwinEU synergies**: Drawing from TwinEU's digital twin ecosystem to enhance realtime data sharing, adaptive operations, and resilience in energy systems.

The overarching goal was to establish a network of stakeholders for continuous experience exchange, leveraging their expertise to advance HEDGE-IoT's objectives while contributing to broader European energy and IoT goals.

The following subsections are an overview of key projects and initiatives identified for collaboration, which are relevant to HEDGE-IoT:

5.1.1 ODEON

The ODEON project [1] addresses Europe's need for a decentralized, renewable energy-based, and resilient infrastructure by integrating renewable energy sources across electricity, transport, and building sectors. It creates a data-driven ecosystem that empowers stakeholders like DSOs, LECs, prosumers, and energy market participants to actively contribute to the energy transition. Key innovations include a Cloud-Edge Data and Intelligence Service Platform for federated energy data spaces, a Catalogue of AI Artefacts for optimizing energy operations, and tailored services to promote network resilience, self-consumption, and P2P energy trading. Demonstrated across five countries, ODEON's scalable solutions aim to reduce peak demand, network losses, and carbon emissions while enhancing energy efficiency and data transparency.

As a sister project to HEDGE-IoT, ODEON shares its goals of decentralized energy management and edge intelligence, leveraging IoT, AI, and edge computing to create interoperable and sustainable energy ecosystems aligned with Europe's green and digital transitions.

5.1.2 THE BRIDGE INITIATIVE

The BRIDGE Initiative [2] is a European Commission-supported program designed to foster collaboration and knowledge exchange among projects funded under Horizon 2020 and Horizon Europe. Its overarching goal is to advance the transition toward a low-carbon energy system in Europe through a collective approach to innovation and problem-solving.

Key objectives of the BRIDGE Initiative include:

- **Facilitating cooperation**: Acting as a collaborative platform for sharing experiences, best practices, and lessons learned among projects to avoid duplication of efforts and foster synergies.
- **Knowledge sharing**: Disseminating results and findings to a broader audience, including policymakers, industry stakeholders, and the public.
- **Addressing cross-cutting issues**: Tackling common challenges such as regulatory barriers, consumer engagement, data management, and new technology integration.
- **Supporting policy development**: Informing and shaping European energy policies and regulations with insights and recommendations derived from project outcomes.
- **Promoting innovation**: Encouraging the adoption of innovative solutions and technologies to achieve the European Green Deal's objective of climate neutrality by 2050.

BRIDGE operates through four Working Groups (WGs):

- 1. **Data Management**: Focuses on interoperability, privacy, and cybersecurity in energy project data sharing.
- 2. **Regulation**: Examines regulatory frameworks to facilitate the integration of innovative energy technologies.
- 3. **Customer and Citizens Engagement**: Develops strategies to involve consumers in the energy transition.
- 4. **Business Models**: Explores sustainable economic frameworks for the widespread adoption of energy innovations.

BRIDGE's collaborative ecosystem provides HEDGE-IoT with access to a network of expertise and best practices. By participating in its WGs, HEDGE-IoT can contribute to and benefit from insights into IoT-enabled energy systems, enhancing its solutions for data management, citizen engagement, and regulatory compliance.

5.1.3 AIOTI

The Alliance for AI, IoT and Edge Computing Innovation (AIOTI) [3] is a collaborative initiative dedicated to defining a standardized Reference Architecture for IoT systems and deployments. This framework provides reusable interfaces and structures, streamlining the integration and implementation of IoT solutions. AIOTI also plays a critical role in harmonizing established standards and protocols, ensuring consistency and efficiency across the IoT ecosystem.

In addition to its Reference Architecture, AIOTI addresses key architectural considerations essential for effective IoT deployments. These include interoperability, data security, privacy, edge and cloud computing, virtualization, data marketplaces, and big data analysis. By incorporating these elements, AIOTI ensures that IoT systems are not only efficient and scalable but also secure and aligned with market demands. The AIOTI Working Group (WG) on Standardization, including its expert group on semantic interoperability, and the WG on Energy are especially relevant for the Hedge-IoT project.

5.1.4 CEEDS DIGITAL EUROPE DEPLOYMENT

The Common European Data Spaces (CEEDS)[4] initiative is central to the European Commission's strategy to harness the potential of data for innovation and economic growth. By establishing secure, interoperable, and privacy-preserving environments, CEEDS facilitates the pooling, accessing, sharing, and reusing of data across strategic sectors, including energy. This unified framework, supported by robust data governance mechanisms, enables stakeholders to derive value from their data while adhering to EU regulations on personal data protection, consumer rights, and competition.

In the energy sector, CEEDS plays a transformative role by integrating renewable energy sources, optimizing grid management, and enabling advanced energy services. Projects like Int:NET, OMEGA-X, and Enershare exemplify how CEEDS fosters collaboration among stakeholders through secure and scalable data exchange platforms. These energy data spaces promote transparency and trust across the energy value chain, supporting innovation in demand-response systems, energy marketplaces, and decentralized energy management. The interoperability and governance frameworks provided by CEEDS ensure that diverse energy data sources are effectively leveraged to accelerate Europe's energy transition and decarbonization goals.

5.1.4.1 HORIZON EUROPE PREPARATION ACTIONS FOR THE COMMON EUROPEAN ENERGY DATA SPACE (CEEDS)

Int:NET[5]: Establishes the Interoperability Network for Energy Transition, uniting stakeholders to develop standardized, cross-domain energy services. It includes a FAIR knowledge platform and assessment methodologies to harmonize energy services, fostering consensus among regulatory and standardization bodies

Omega-X [6]: Creates a federated Energy Data Space for secure, sovereign, and scalable data sharing across the energy sector. It implements a data and service marketplace aligned with European standards, enabling stakeholders to leverage diverse datasets for Al-driven innovation and service enhancement

ENERSHARE[7]: Develops a Common European Energy Data Space to support the digitalization and decentralization of energy systems. It defines a Data-Driven Reference Architecture aligned with FIWARE, IDSA, and GAIA-X standards, ensuring interoperability and trust across the ecosystem.

5.1.5 METAOS FOR THE EDGE PROJECTS

NEMO [8]: NEMO establishes itself as the gamechanger of the AloT-edge-cloud continuum by introducing an open source, modular and cybersecure meta-operating system, leveraging on existing technologies and introducing novel concepts, methods, tools, testing and engagement campaigns. This project will bring intelligence closer to the data and make Al-as-a-Service an integral part of network self-organisation and micro-services execution orchestration. Its widespread penetration and massive acceptance will be achieved via new technology, pre-commercial exploitation components and liaison with open-source communities.

aerOS [9]: The project will deliver common virtualised services to enable orchestration, virtual communication (network-related programmable functions), and efficient support for frugal, explainable AI and creation of distributed data-driven applications. aerOS will be based on continuum infrastructure elements like smart devices, tiny/far/near edge computing nodes, and public/private clouds (including virtual services and NetApps), providing scalable and secure access to applications and services while keeping its data autonomy. The solution will be generic and directly applicable to any vertical, cross-vertical business process, and several different physical or virtual platforms.

Nephele[10]: The NEPHELE project aims to revolutionize IoT-edge-cloud orchestration by enabling efficient, reliable, and secure end-to-end management of hyper-distributed applications. Through its innovative IoT and edge computing software stack, NEPHELE ensures device-independent virtualization and interoperability without middleware, while its synergetic meta-orchestration framework coordinates cloud and edge computing platforms using a "system of systems" approach. Demonstrated in diverse use cases such as smart energy management, disaster response, and remote healthcare, NEPHELE's solutions leverage 5G and distributed AI technologies to break barriers in openness and automation, aligning with HEDGE-IoT's goals of seamless edge intelligence integration.

FluiDOS [11]: FluiDOS will deliver a fluid, dynamic, scalable, and trustworthy computing continuum, spanning across devices and unifying edge and cloud in an energy-efficient manner. This project will build on consolidated operating systems and orchestration solutions, resource sharing in the computing continuum, Al-based optimization for cost and energy, and a zero-trust paradigm to enable an open, collaborative ecosystem that will support European digital autonomy. Stakeholders will be involved through pilots and demonstrators in the fields of agriculture, energy, and logistics, challenging the project's ability to adapt to different environments and operating conditions, showcasing its true innovation potential.

ICOS[12]: This project will cover challenges of the IoT-edge-cloud paradigm, proposing an approach to embed a set of functionalities, defining an IoT-Cloud Operating System (ICOS). Its aim is to design, develop and validate a meta-operating system by addressing the challenges of device volatility and heterogeneity, continuum infrastructure virtualization and diverse network connectivity, optimized and scalable service execution and performance, as well as resources consumptions. It will also cover security, privacy, and trust, and reduce integration costs and effective mitigation of cloud provider lock-in effects, in a data-driven system built on openness, adaptability, data sharing and a future edge market scenario for services and data.

NebulOuS [13]: NebulOuS will contribute to research in cloud and fog computing brokerage, by introducing advanced methods to enable secure and optimal application provisioning, resource adaptation and reconfiguration. It will contribute to the cloud computing continuum through the development of a meta-operating system and platform to exploit edge and fog nodes, in conjunction with multi-cloud resources, to cope with requirements posed by low latency applications.

5.1.6 SWARM PROJECTS

OASEES [14]: Develops an open-source, secure, and decentralized programmability framework for edge devices, leveraging AI/ML accelerators like FPGAs, spiking neural networks, and quantum computing. It addresses challenges in managing distributed infrastructures and ensures secure data handling through a privacy-preserving Object ID federation process

TaRDIS [15]: Simplifies the development and management of heterogeneous swarms and decentralized systems by introducing an event-driven, language-independent programming model with built-in distribution abstractions and decentralized machine learning primitives. It emphasizes

correctness-by-design principles and develops decentralized algorithms and runtime protocols to support its programming model.

P2CODE[16]: Aims to create a secure, open, and trusted IoT-to-edge-to-cloud compute continuum, unlocking the full potential of edge intelligence. By developing an innovative programming platform, P2CODE enables dynamic and efficient deployment of collaborative applications across heterogeneous infrastructures. With applications in logistics, utilities inspection, worker assistance, and public protection and disaster relief (PPDR), the project drives advancements in edge computing, fostering seamless interoperability, scalability, and reliability in diverse operational environments.

Open Swarm [17] [18]: Aims to revolutionize low-power wireless technology by developing collaborative and distributed smart nodes that balance high-quality communication with energy efficiency. It focuses on efficient networking, energy-aware AI, and swarm programming, enabling advanced swarms of smart nodes to address complex challenges in sectors like renewable energy, environmental monitoring, health, and mobility.

SmartEdge [19]: Focuses on achieving dynamic, decentralized edge intelligence with an emphasis on reliability, security, privacy, and scalability. It utilizes a semantic-based interplay of edge devices, enabling real-time distribution of autonomous intelligence swarms across diverse sensors and devices. The solution includes a low-code programming environment with tools for seamless device interaction, real-time swarm networking, and multimodal stream fusion across the edge-cloud continuum.

5.1.7 COORDINATION AND SUPPORT ACTIONS

The Coordination and Support Actions (CSAs) play a pivotal role in advancing the European Cloud-Edge-IoT (CEI) Continuum by fostering collaboration, innovation, and interoperability across the ecosystem. These CSAs–UNLOCK-CEI, Open Continuum, NexusForum.EU, and CEI-Sphere– address both supply and demand challenges, facilitate stakeholder engagement, and promote the adoption of cutting-edge technologies. Together, they provide the foundation for a cohesive European computing ecosystem, enhancing strategic autonomy, interoperability, and long-term innovation.

UNLOCK-CEI: This project accelerates the deployment of the Cloud-Edge-IoT (CEI) continuum by assessing Europe's current CEI demand, defining market scenarios, and developing a CEI Readiness Framework. It fosters a CEI Industry Constituency to aggregate demand needs and identify adoption drivers, enhancing market readiness and innovation in demand value chains.

Open Continuum: Supporting the CEI ecosystem, Open Continuum addresses the supply side by promoting strategic autonomy through open-source technologies and standards. It fosters a European industrial open ecosystem, maps the supply-side landscape of the computing continuum, and engages EU industrial and research actors to build an interoperable cloud-edge-loT ecosystem.

NexusForum.EU: This project consolidates European research, innovation, and regulatory activities within the Cognitive Computing Continuum. It aligns research priorities with EU policies,

fosters collaboration between scientific communities, industry, and standardization organizations, and facilitates international engagement, particularly with Japan and South Korea.

CEI-Sphere: Launched in 2024, CEI-Sphere addresses emerging CEI challenges through Large-Scale Pilots (LSPs). It establishes inter-LSP cooperation by creating "Spheres" around key sectors, fostering interoperability, and promoting collaboration. The project supports market insights, enhances privacy-preserving open-edge ecosystems, and develops toolkits with standards and certification frameworks to ensure scalable solutions.

5.1.8 CEF DIGITAL OPERATIONAL DIGITAL PLATFORMS

The CEF Digital Operational Digital Platforms (ODPs) initiative, part of the European Commission's Connecting Europe Facility – Digital (CEF Digital)[20] program, aims to modernize Europe's energy networks by integrating cross-border digital capabilities. This initiative supports the EU's environmental, energy, and digitalization goals by enabling a secure Internet of Energy. ODPs function as ICT resources that facilitate the flow, storage, processing, and analysis of energy data, integrating with existing and emerging European data, cloud, edge computing, and connectivity infrastructures. The implementation follows a two-phase approach: an initial Coordination and Support Action (CSA) launched in 2022 with a \notin 4 million budget, and a subsequent works phase anticipated in 2024, focusing on deploying the necessary digital infrastructure. By bringing together stakeholders from digital and energy sectors, the ODPs initiative supports a secure, interoperable, and efficient digital framework for Europe's critical energy networks.

HEDGE-IoT will establish close connections and collaboration with the EnerTEF project that kickedoff in November 2024, exploiting the fact that ICCS (a core partner in HEDGE-IoT) is the coordinator of the EnerTEF project, while ED (the coordinator of HEDGE-IoT) is also a core partner in EnerTEF.

5.1.9 TWINEU

The TwinEU project [21] leverages Digital Twin (DT) technology to create a federated ecosystem of interoperable solutions, addressing Europe's need to accelerate energy transition and build resilient energy systems. By enhancing grid reliability, cybersecurity, and flexibility, TwinEU supports renewable energy integration, reduces operational costs, and fosters innovative business models. With deployment across 15 European countries, the project aligns with the REPowerEU framework, delivering scalable solutions for a sustainable, low-carbon energy future.

TwinEU's strategic objective is to develop a pan-European digital twin ecosystem, enabling realtime, collaborative, and adaptive representations of energy systems. Its federated approach allows operators, including transmission and distribution system operators and market players, to implement tailored DT solutions while ensuring interoperability.

The project emphasizes innovation across several critical areas:

• **Interoperable DT Architectures:** Ensures reusable, scalable, and interoperable DT implementations to avoid fragmented solutions.

- **Adaptive DT Systems:** Develops closed-loop adaptive DTs that synchronize with real-world assets, self-learn, and autonomously optimize operations.
- **High-Performance Computing (HPC) Integration:** Enables scalable simulations and realtime decision-making through advanced AI and HPC capabilities.
- **Metaverse-oriented Immersive DTs:** Utilizes XR technologies for immersive environments to enhance asset planning and operational workflows.

5.2 ACTIVITIES IMPLEMENTED IN YEAR 1

During the first year of the HEDGE-IoT project, significant progress was achieved on key collaborations with sister and other relevant projects, active participation in BRIDGE and AIOTI initiatives, and initial synergies with CEF Digital platforms, setting the stage for deeper engagement and alignment with Europe's energy and IoT objectives. The activities are outlined in the subsections below.

5.2.1 PARTNERSHIPS AND COLLABORATIONS WITH PROJECTS:

ODEON: HEDGE-IoT and ODEON established a close partnership through mutual participation in their respective Kick-Off Meetings (KOMs). Both projects provided brief presentations to introduce their objectives, methodologies, and potential synergies. These exchanges facilitated a shared understanding of their complementary focuses on federated ecosystems and edge intelligence, laying the groundwork for future collaboration in advancing Europe's energy transition goals.

CEEDS projects: HEDGE-IoT actively collaborated with CEEDS projects by participating in a joint session during ENLIT 2024 in Milan. This session, organized by Int:Net and the Data Space Cluster projects, provided a platform to showcase HEDGE-IoT's objectives while exploring synergies in federated data spaces. Additionally, HEDGE-IoT contributed to the Energy Data Space Cluster Meeting held in Brussels in January 2024. During this meeting, the project team presented its approach and engaged in discussions with other stakeholders, fostering connections and aligning with broader European data-sharing initiatives.

META-OS and Swarm projects: In April 2024, HEDGE-IoT participated in a physical workshop organized by the META-OS projects cluster in Brussels. The workshop provided an opportunity for HEDGE-IoT to present its vision and contributions, as well as to engage in discussions on advanced orchestration tools and edge-cloud continuum solutions. While no direct activities have yet been undertaken with the Swarm projects, HEDGE-IoT recognizes their potential for future collaboration and plans to establish connections in the coming phases of the project.

Twin-EU: HEDGE-IoT shares several common partners with TwinEU, which has helped establish a strong relationship between the two projects. While no concrete joint activities have occurred yet, discussions are underway to identify areas of collaboration. This partnership holds significant promise for aligning efforts in leveraging digital twin ecosystems for data sharing and adaptive operations, with planning for future engagement already in motion.

5.2.2 PARTNERSHIPS AND COLLABORATIONS WITH INITIATIVES:

BRIDGE: HEDGE-IoT actively participated in the BRIDGE General Assembly held in Brussels on April 9-10, 2024. This engagement provided a valuable platform to attract visibility and align with the broader plans of the BRIDGE community. In addition, project partners regularly participated in virtual meetings of the BRIDGE Working Groups, contributing to discussions and exchanging insights on key topics such as data management, regulatory frameworks among others. HEDGE-IoT also supported the WGs by responding to surveys, ensuring its perspectives and methodologies were integrated into ongoing collaborative efforts.

AIOTI: Many members of the HEDGE-IoT consortium are active participants in the AIOTI (e.g. RWTH, ICCS, TRIALOG, INESC, TNO), leveraging their involvement to establish strong liaisons with this key initiative. These connections are fostering alignment with AIOTI's frameworks and standards, particularly in areas such as IoT architecture, security, and scalability. This collaboration ensures that HEDGE-IoT benefits from AIOTI's extensive expertise while contributing its own advancements to the IoT ecosystem.

5.2.3 ENGAGEMENT ACTIVITIES AND PLATFORMS

Participation in CSAs: No direct activities with CSAs have been undertaken in the first year. However, the project remains aligned with CSA initiatives and plans to engage in collaborative opportunities as they arise in the subsequent phases.

Synergies with CEF: Efforts to establish synergies with the CEF Digital Operational Digital Platforms are underway. The project will establish close links with the Testing and Experimentation Facility for the Energy sector, particularly through the collaboration EnerTEF Horizon Europe project, which has recently commenced. Active links are being developed via shared consortium partners, laying the groundwork for future collaboration and alignment of objectives. More specifically, ED and ICCS are involved in both projects, ED being the coordinator of HEDGE-IoT and ICCS the coordinator of EnerTEF. These connections aim to strengthen HEDGE-IoT's integration within Europe's broader digitalization efforts in energy systems.

5.3 STRATEGY FOR YEAR 2

In Year 2, HEDGE-IoT will build on the progress made so far by expanding its partnerships, strengthening collaborations, and increasing community engagement. The focus will be on using project results to drive joint activities, share knowledge, and address gaps identified in the first year.

HEDGE-IoT will deepen its partnership with ODEON project by identifying more opportunities for coalitions and collaborative work. Collaborations with CEEDS projects will continue, including more participation in joint events and meetings on federated energy data spaces. Plans are in place to

work more closely with META-OS and Swarm projects, focusing on orchestration tools and edge intelligence. Early connections with TwinEU will be developed into joint activities, leveraging shared digital twin expertise.

The project will increase its involvement in the BRIDGE Initiative, contributing more actively to Working Groups on data, regulation, business models and consumer engagement. Engagement with AIOTI will also grow, aligning HEDGE-IoT's work with established IoT standards for security and scalability.

HEDGE-IoT will strengthen its links with CEF Digital ODPs, particularly through the EnerTEF project, by contributing to cross-border energy data sharing efforts and distributed processing through federated and ML AI algorithms. The project will also prioritize collaboration with CSAs like UNLOCK-CEI to support cloud-edge-IoT integration.

Year 2 will see the launch of more events, such as webinars and workshops, to showcase results and build connections with new stakeholders. The project will also engage with standardization bodies to align its innovations with broader European goals.

6 CONCLUSIONS AND RECOMMENDATIONS

In these first 12 months of the project, the DC Plan and materials have been created and many communication activities were implemented, monitored and adjusted. HEDGE-IoT brand and visual identity were strengthened throughout the year and several graphic materials were to accommodate every need communication- and content-wise. These materials were shared among the consortium partners and used across different platforms and events, ensuring that the project would reach out to its stakeholders.

The main tools and channels were defined and have been successfully used during the first twelve months, as is the case of the website, social media channels, and email. These channels have seen a continuous growth over time, meaning that HEDGE-IoT is building a strong, growing community and having an impact on the target ecosystem.

HEDGE-IoT has created a strategy to be close to its audience, mainly through social media and events, ensuring a continuous relationship with its followers and stakeholders. Synergies, partnerships and collaborations with other projects have been initiated and matured over time, particularly with other EU Projects and Initiatives.

A more targeted approach towards stakeholder engagement will be applied in Year 2. As the results start to become public, the focus will be on using those results to drive joint activities, share knowledge, and address gaps identified in the first year. Clustering activities with sector-related initiatives and with other EU Projects will be crucial to promote the understanding of the project's technologies but also the early adoption of the technologies, standards or methods, in full alignment with the upcoming exploitation strategy and the standardization activities.

Through these initiatives, the second year of HEDGE-IoT will see a dynamic blend of continuity and adaptation, positioning the project for even greater reach and impact.

REFERENCES

- [1] "ODEON Project," [Online]. Available: https://odeonproject.eu/.
- [2] E. Commission, "Bridge," [Online]. Available: https://bridge-smart-grid-storage-systems-digitalprojects.ec.europa.eu/.
- [3] AIOTI. [Online]. Available: https://aioti.eu/.
- [4] E. Commission, "Shaping Europe's digital future Common European Data Spaces," [Online]. Available: https://digital-strategy.ec.europa.eu/en/policies/data-spaces.
- [5] "int:Net Project," [Online]. Available: https://intnet.eu/.
- [6] "Omega-X Project," [Online]. Available: https://omega-x.eu/.
- [7] "Enershare Project," [Online]. Available: https://enershare.eu/.
- [8] MetaOS. [Online]. Available: https://meta-os.eu/.
- [9] "aerOS Project," [Online]. Available: https://aeros-project.eu/.
- [10] "Nephele Project," [Online]. Available: https://nephele-project.eu/.
- [11] FluiDOS. [Online]. Available: https://www.fluidos.eu/.
- [12] "ICOS Project," [Online]. Available: http://icos-project.eu/.
- [13] "NeboulOuS Project," [Online]. Available: https://nebulouscloud.eu/.
- [14] "OASEES Project," [Online]. Available: https://oasees-project.eu/.
- [15] "TaRDIS Project," [Online]. Available: https://project-tardis.eu/.
- [16] "P2CODE Project," [Online]. Available: https://p2code-project.eu/#.
- [17] E. Commission, "Orchestration and Programming ENergy-aware and collaborative Swarms With Alpowered Reliable Methods," [Online]. Available: https://cordis.europa.eu/project/id/101093046.
- [18] "OpenSwarm Project," [Online]. Available: https://openswarm.eu/project/.
- [19] "SmartEdge Project," [Online]. Available: https://www.smart-edge.eu/project/.
- [20] E. Commission, "CEF Digital: Operational Digital Platforms," [Online]. Available: https://digitalstrategy.ec.europa.eu/en/news/cef-digital-operational-digital-platforms.
- [21] "TwinEU Project," [Online]. Available: https://twineu.net/.

7 APPENDIX A – KER ANALYSIS PER PARTNER

Partner	Value proposition	Future exploitation strategy	Target Audience	Synergies with other HEDGE-IoT partners	Synergies with other EU researchers/SEMs	Impact on EU and local/regional policies	Market barriers	IPR measures	Possible Exploitation Risks
ED	The KER creates a technical foundation for future research and development in IoT, AI/ML, and edge computing.	ED can leverage the loT solutions of HEDGE-loT in order to incorporate it into existing loT platforms that ED is developing. It can allow the creation of market-edge intelligent services (e.g. predictive analytics, demand response schemes, etc.)	TSO/DSO, Aggregator, Market Operator, Energy End-Users, Energy Communities, Prosumers, Consumers	Not yet clearly defined. To be explored.	Use the generated knowledge an expertise to attract more clients and to better position ED in future innovation projects	ED can utilize the KER to build federated applications that bridge the edge and cloud layers, contributing to projects focused on the Next Generation Internet (NGI) and the development of European Data Spaces.	Interoperability barriers Scalability limitations Cost sensitivity Return on investment uncertainty Standardization and harmonization	To be defined. Most likely open- source for research purposes, not open-source for commercial purposes	Lack of user engagement and adoption
DST	The HEDGE-IoT solutions developed for the edge level are a critical asset for DST, delivering advanced capabilities for local monitoring and management that significantly enhance energy grid resilience while reducing response times to critical events. These innovations strengthen DST's position in the energy digitalization, empowering the company to offer scalable, interoperable solutions designed to meet the evolving	If applicable, DST plans to use the KER by integrating edge intelligence capabilities into existing products to expand its service offerings, promoting these solutions as key components in energy sector packages, particularly for system operators and local infrastructure managers, while also developing additional applications to address resilience, efficiency, and	The end-users and direct beneficiaries will include: 1) TSO/DSO requiring edge solutions for real-time monitoring and management. 2) Energy communities and aggregators seeking to optimise the local management of distributed resources. 3) Technology companies incorporate IoT solutions into their ecosystems. 4)Regulatory bodies in need of tools for advanced and	DST will collaborate with ED, ICCS, and INESC to integrate the tools that improve intelligence at the airborne level, while working with TNO and other partners to ensure that IoT solutions comply with interoperability standards such as SAREF. In addition, DST will participate in pilot demonstrations to test these solutions in real-world scenarios, supporting pilot	Based on this KER, we may consider participating in other EU projects (yet to be defined and selected) to facilitate further development and collaboration.	At the moment, there are no concrete plan. In case, DST will use the KER in the following ways: 1) Green Deal, DST aims to integrate renewables through IoT tools that improve energy flexibility. 2) EU Digital Strategy, DST will promote interoperable solutions that comply with European standards, advancing the digitalization of energy networks. 3)In regional pilot projects to boost energy resilience and efficiency.	- Lack of awareness among potential users about the added value of edge IoT solutions High initial implementation costs for clients, particularly for small businesses and Iocal communities Cultural resistance to adopting new technologies from traditional operators.	NDAs will be used to protect know- how and intellectual property during collaborations. Where applicable, licensing agreements will be implemented for third-party use of loT solutions. Where applicable, patents will be secured for the developed loT technologies.	- During the project: Difficulty in integrating with existing infrastructures. Mitigation: Conducting in-depth pilot testing with technical partners After the project: Ensuring long-term compatibility with evolving infrastructures. Mitigation: Continuous updates and support to maintain integration with new systems. Likehood: medium

	needs of industrial	advanced energy	compliant energy	partners, with a				898 ⁹ 800	
	partners and clients.	management needs	management.	focus on the Italian				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		in new European		pilot			UEDO	Hell	stic Approach
		markets.					HEDG		talization of the Energy Ecosystem ugh adaption of IoT solutions
	We aim to validate the	By offering the		The Finnish and	If the project is	Dynamic Line Rating	Our market	The background IP	One notential risk is
	effectiveness of the	SUMO Edge DLR	1000, 0000	Italian	successful we	(DLR) technology	research indicates	was defined in the	the possibility of
	SUMO Edge Dynamic	device as an		demonstrations are	look forward to	inherently supports the	several notential	consortium	integration
	Line Rating (DLR)	additional solution		also considering	advancing our	objectives of the Green	barriers to the	agreement.	complications with
	solution for our	to our customers.		the implementation	collaboration with	Deal by increasing the	market	IPR Provisions in	devices at the
	customers, including	Furthermore, we will		of Dynamic	our HEDGE-IoT	safe loading capacity of	penetration of our	the Consortium	substation level.
	Transmission System	provide integration		Thermal Rating	partners in future	the existing orid.	exploitable result.	Agreement will be	These complications
	Operators (TSOs) like	options with		technology. We	projects. This will	thereby reducing the	Firstly,	included.	could arise due to
	ELES and Distribution	protection relays,		plan to collaborate	help us achieve a	need for new power	Transmission	New IP	compatibility issues
	System Operators	enhancing our		with these partners	higher Technology	line construction and	System Operators	(foreground IP)	or the complexity of
	(DSOs) like EG. By	product portfolio		by providing our	Readiness Level	increasing the hosting	(TSOs) and	created during the	integrating new
	testing the feasibility	with dynamic		SUMO Edge DLR	(TRL) for our edge	capacity for renewable	Distribution	project will be	technology with
	of porting our DLR	overcurrent		solution to support	solution	energy sources. This	System Operators	identified and	existing
	algorithm and	protection		their initiatives.	developed during	aligns with the EU's	(DSOs) often	evaluated.	infrastructure.
	computations to the	capabilities. This		This collaboration	the HEDGE-IoT	goals of promoting	prefer sensor less	Appropriate form	Mitigation
	edge, we can ensure	strategy will not only		will enhance the	project. By	sustainability and	solutions for	of protection	Strategies: - Strict
	real-time, accurate	expand our market		overall project	leveraging the	efficient resource use.	Dynamic Line	(patents,	adherence to
	capacity assessments	offerings but also		outcomes and	expertise and	Additionally, our DLR	Rating(DLR)to	trademarks,	standards(e.g. IEC
	of overhead lines and	improve the safety		foster innovation	resources within	solution contributes to	minimize the need	copyrights, trade	61850) - Conduct
OPR	transformers.	and efficiency of our		across the HEDGE-	our network, we	the EU Digital Strategy	for extensive	secrets) for each	thorough
	Additionally, we are	customers' energy		loT network.	aim to enhance	by integrating	hardware	new IP asset will	compatibility testing
	exploring the	systems.			the capabilities	advanced IoT and edge	installations. This	be determined.	with a variety of
	integration of this				and applications	computing	preference is	Possible joint	substation devices
	edge-based solution				of our IoT	technologies, fostering	driven by the	ownership and	before deployment
	with protective relays				solutions. This	innovation and digital	desire to avoid the	related	Develop detailed
	to introduce dynamic				collaborative	transformation within	significant time	commercialization	integration
	overcurrent protection				approach will not	the energy sector.	and monetary	strategies and	guidelines Estimated
	capabilities. This				only accelerate		investments	licensing will be	Likelihood: Medium:
	enhancement will				innovation but		associated with	handled in	While integration
	allow for frequent				also ensure that		hardware-related	bilateral	challenges are
	updates to safe				our solutions are		activities.	agreements	common, proactive
	operational limits,				aligned with the		Additionally, there	between involved	testing and support
	thereby improving the				latest industry		may be a lack of	partners.	can significantly
	reliability and safety of				standards and		awareness about		reduce the likelihood
	the energy system.				regulatory		the benefits and		of severe issues.
					requirements.		necessity of our		
					Additionally, we		DLK SOlUTION, as		
					pian to explore		well as potential		
					new EU INITIATIVES		resistance from		

		and funding	users who are	
		opportunities to	accustomed to	
		further support	traditional	
		the development	methods of	
		and deployment	operation under	
		of our edge	the Static Line	
		technologies	Rating (SLR).	
		across various		
		energy systems.		

Partner	Value proposition	Future exploitation strategy	Target Audience	Synergies with other HEDGE-loT partners	Synergies with other EU researchers/SEMs	Impact on EU and local/regional policies	Market barriers	IPR measures	Possible Exploitation Risks
TUC	The KER aligns with TUC's cutting-edge research areas of cloud computing, IoT, and sustainable energy systems, enhancing the university's research output, education, and application potential. It offers a foundation for new publications, attracting new research grants, and for new partnerships with energy companies, utility providers, and companies involved in edge computing or IoT.	The exploitation strategy is focused on technology transfer and academic activities. TUC aims to improve the education and capabilities of students concerning edge orchestration in smart grid. TUC plans new courses on edge/fog/cloud computational orchestration within the Computer Science department. In terms of technological transfer of research into the economy, TUC expects to be involved in the future with consultancy activities in the IoT and energy domains contributing to the adoption and advent of edge orchestration in smart grid. Finally, it will serve as a foundation for future collaborations with EU partners to scale these innovations.	Energy stakeholders, tech companies, policy makers and researchers.	Future projects on loT and edge computing and their applications in the energy domain may leverage the service orchestrator to deal with computational task offloading.	Future projects on loT and edge computing and their applications in the energy domain may leverage the service orchestrator to deal with computational task offloading.	We plan to use the orchestrator in EU- aligned projects to contribute to the digital and green transformation of Europe's energy landscape while securing potential funding and research collaborations. Each new project will offer opportunities for deployment, testing, and scaling, allowing the demonstration of significant impacts on computational continuum smart energy grids and environment.	Regulatory challenges related to the energy domain and computational orchestration toward the edge.	Open-source licensing	Risk: Potential users may lack the technical skills required to manage and maintain a cloud- edge orchestrator. Mitigation: provide training programs and user guides. Risk: integration challenges with existing grid infrastructures. Mitigation: modular design, pilot testing, technical support, etc.

DST		collaboration in digital grid, renewable integration, and smart city initiatives.	to adopting new technologies from traditional operators.	use of IoT solutions. Where applicable, patents will be secured for the developed IoT technologies.	small-to-medium enterprises (SMEs). Mitigation: Offering flexible pricing models such as SaaS or subscription- based services. Likelihood: High, but manageable with targeted marketing and support Regulatory Risk: Changes in energy or data privacy regulations could require adjustments. Mitigation: Ongoing monitoring of regulatory developments in the EU and updating solutions as needed. Likelihood: Low, with
					proactive strategy in

Partner	Value proposition	Future exploitation strategy	Target Audience	Synergies with other HEDGE-loT partners	Synergies with other EU researchers/SEMs	Impact on EU and local/regional policies	Market barriers	IPR measures	Possible Exploitation Risks
ED	Offering these AI/ML tools positions ED organization as a leader in cutting-edge digital energy solutions, attracting partners and clients in the energy sector.	Offer Al/ML- powered tools as part of turnkey solutions for clients, such as DSOs, TSOs, and energy-intensive industries. Demonstrate leadership in digital transformation for the energy sector.	TSO/DSO, Aggregator, Market Operator, Energy End- Users, Energy Communities, Prosumers, Consumers	Not yet clearly defined. To be explored.	Use the generated knowledge an expertise to attract more clients and to better position ED in future innovation projects	Enhancing Renewable Energy Integration, energy efficiency optimisation, electrification of transport and industry, enable data-driven decision making, digitalizing the enrgy transition and supporting the circular economy	Data availability and quality Lack of trust in Al solutions Computational resource constraints	To be defined. Most likely open- source for research purposes, not open-source for commercial purposes	Integration Complexity Model generalization and adaptability
DST	Al/ML tools enhance decision-making, operational efficiency, and resilience of interconnected assets, supporting DST in delivering scalable and adaptive energy solutions.	Integrate AI/ML tools into existing products to optimise energy management systems. Market tools to energy operators, grid managers, and other stakeholders.	TSO/DSO and energy aggregators	Work with WP3 and WP4 partners to ensure interoperability and compliance with energy industry standards.	Participate in Horizon Europe and other EU initiatives to refine and expand AI/ML toolsets.	Support Green Deal goals by enhancing grid management and renewable integration. Align with the EU Digital Strategy to drive the digitalization of energy infrastructure and meet sustainability goals.	Limited awareness of the advantages AI/ML offers for energy optimisation. Significant upfront implementation costs, particularly for smaller utilities or regional operators. Concerns regarding data privacy when integrating AI/ML tools with	NDAs will be used to protect know- how and intellectual property during collaborations. Where applicable, licensing agreements will be implemented for third-party use of IoT solutions. Where applicable, patents will be secured for the developed IoT technologies.	Technological Risk: Integration challenges with existing systems. Mitigation: Pilot testing and collaboration with partners. Economic Risk: Market resistance due to high costs. Mitigation: Flexible pricing models and user training. Regulatory Risk: Changes in data privacy or Al regulations. Mitigation: Ongoing monitoring of legal

							sensitive operational information.	DGE-Io1	frameworks for compliance. Helicic Approch famed a fungemental of the structure of the sources through objection of for solutions
ABB	The developed tools enable DSOs to improve efficiency and reliability of their supply service. This extends ABB's possibilities for new products and services.	ABB will examine the productisation potential of the developed tools and environments as well as identify related future research needs.	The tools are mainly for DSOs but they will, naturally, benefit all the DSO customers through higher reliability of the network (less outages) and increased DER hosting capacity.	Demo Finland is built in close collaboration between ABB, TAU, VTT, JSE and ENERV. The objective is that as large portion of the solutions as possible will remain in operational use after the project in JSE's network which is operated by ENERV.	The tools and the demo area can be utilised in further development activities and possibly also new EU projects.	The results obtained will be widely disseminated to raise awareness of the potential of new functionalities and can also serve as a starting point for new development activities.	It always takes time to raise awareness and gain acceptance of new functionalities. Regulation can also pose some challenges if it does not encourage taking new functionalities into use. The costs naturally are also a significant factor.	Licensable product, patenting where applicable, NDAs in place where needed, keeping selected know- how company secret	Technological risk always exists when developing new solutions. Business cases need to exist before large-scale deployment of new solutions will happen. Regulation should enable using the new functionalities.
VU	As a scientific entity, the added value will consist of developing novel techniques for and insight into the KER's use case and applicability. Future work can build upon the KER, extending and/or otherwise improving it.	If applicable, the KER can be used by others in our organisation for similar use cases or adapted for use in other ones.	The target audience consists of energy grid owners and/or maintainers.	This KER is designed to operate on graph data provided by the TNO's Knowledge Engine.	There are no concrete plans at this point, but, as a scientific and open-source application, the KER will be made available for reuse by our network and future EU projects	As a scientific and open-source application, the KER will be made available for reuse by future EU initiatives.	VU is a scientific partner and does not aim to commercially drive KER's to the market.	Not applicable; the KER will be made available under a permissive license.	The KER will not directly act upon other agents; a human is always kept in the loop to assess and act on the KER's output. An incorrect interpretation of this output can, at most, result in a less efficient operation of an energy grid. All responsibility lies with the human operator.
HSE	By leveraging our existing strengths in cloud technologies, open-source software, and data analytics it enriches our technological capabilities, broadens our market reach, and strengthens our potential for future innovation and	Expand our offerings and enter new markets within the energy sector. We intend to integrate these tools into our existing products and	TSO/DSO, Aggregator, Market Operator, Energy End- Users, Energy Communities, Prosumers, Consumers	Not yet defined	We aim to support co-creation of advanced solutions that address shared challenges in the energy sector. This collaboration will involve knowledge	HSE plans to leverage KER3 in new projects that directly support and advance EU initiatives like the Green Deal and the EU Digital Strategy. Through	High initial costs associated with implementing these technologies might deter organisations, particularly	To be defined	The main potential risk is market acceptance and user resistance. Potential clients may be hesitant to adopt advanced AI/ML solutions due to a lack of awareness or reluctance to change established practices. Mitigation

	collaboration in the rapidly	services,			exchange, joint	active	smaller		strategies include
	evolving energy sector	enhancing their			development	participation in	enterprises		demonstrations and pilot
		capabilities and			efforts, and the	EU-funded	Decistopes to		programs to showcase
		providing added			integration of	projects and	Resistance to		the tangible benefits,
		value to our			complementary	collaboration with	change from		thereby increasing
		clients.			technologies to	other	stakenoiders		acceptance. Another risk
		Specifically, we			enhance the	stakeholders, we	accustomed to		involves technological
		aim to support and			functionality and	intend to exploit			integration challenges
		enhance the			applicability of	our involvement in	methods may		with existing systems,
		following			related to the KER.	the development	result in		which could lead to
		activities:			Through these	of the KER to	reluctance to		implementation delays.
		development of			partnerships, we	support design	emprace new		Mitigation strategies
		new solutions,			intend to	and	solutions		include the development
		enhance existing			participate in	implementation of	Capacros over		of modular and
		services, expand			future EU	scalable,	doto privoov opd		interoperable solutions,
		market reach,			initiatives,	sustainable	uata privacy anu		providing thorough
		offer consultancy			contribute to	solutions that	security,		documentation, and
		services,			standardisation	support policy	dealing with		offering technical
		participate in			efforts, and foster	goals at both	dealing with		support. Regulatory and
		future projects			innovation that	regional and	sensitive energy		compliance hurdles, such
		and engage in			supports a more	European levels	information could		as adhering to data
		additional			resilient and		impodo		privacy laws like GDPR,
		research and			efficient energy		inipede		could also impact
		development			ecosystem across		acceptance		exploitation. Mitigation
		initiatives,			Europe		Integration		strategies include the
		collaborate with					challenges with		implementation of
		partners to					existing legacy		privacy-by-design
		strengthen our					systems and		principles and staying
		network of					navigating		updated on regulatory
		industry and					complex		changes to ensure full
		academic					regulatory		compliance.
		partnerships.					compliance		
							requirements		
							requiremente		
	QUE has already developed a	Deploy, test and	Energy Market	Not yet defined	Increase the tool's	Leverage the KER	High	To be defined	Competition from
	tool which processes and	fine-tune the	Actors(Utilities		technology	to optimize	implementation		Established Players (high)
	contextualizes IoT data from	incorporated	and Energy		readiness level	household and	costs due to the		High Implementation
	households and by	algorithms by	Providers and		towards	building energy	broad IoT		Costs (medium) Limited
OUF	leveraging machine learning	applying the	Retailers), Smart		transforming it to a	consumption	infrastructure		Market Adoption (medium)
	algorithms, it builds a	solution into	Energy Solution		commercialized	Implement the	demanded to		Dependence on Data
	comprehensive profile of the	various	Providers Smart		solution and try to	KER in projects	capture the		Quality (High)
	"consumer," capturing the	demonstration	Building		use EU R&D	focused on smart	necessary		
	characteristics of the	cases	Operators and		funding to support	grids and energy	information for		
	individuals or groups		Facility Managers		this process	communities to	occupants		

	residing in a specific building.					support local energy trading and self-sufficiency Reduce carbon footprints by enabling market actors to design carbon-neutral strategies based on extracted insights into energy consumption	profiling Difficulties in adoption (potential users might prefer legacy solutions over innovative solutions) Fragmented market across countries and regions with varying regulations	DGE-loT	Holistic Approach Registrictures of the Caregy of Approximation Registrictures of the Caregy for the State Registricture of Approximation of Approximations through edgetion of Aproximations
UNIZG	The goal of this KER is to develop different Al/ML algorithms that will enable advanced calculations in distribution grids by exploiting the potential of installing IoT devices in secondary substations. The installation of IoT devices will create a lot of new data and measurements and Al/ML algorithms have shown the ability to deal with big data and the challenges it introduces to planning and everyday operation of power systems. The solutions aim to enable new calculations that will allow DSO a better insight into dynamic changes in distribution networks. With ever ever- increasing integration of low-carbon units, it is important to provide a solution that will identify the capacity of installed units and assess how they can contribute to the system's flexibility. Developed Al/ML	The set of AI/ML tools that will be developed within this project can be extended in future. Initial functionalities are designed to work in the defined environment and with data collected in the specific demo- site. However, future work will be oriented towards upgrading the existing algorithms and creating new ones, that will create new opportunities and alleviate emerging challenges power system entities need to face.	DSOs	One of the main goals of the project is to create a set of Al/ML tools, i.e., this will be the specific tasks of many other HEDGE-IoT partners. This enables the exchange of experience and sharing the good practice among the partners. More experience partners can offer guidance and help achieving the set goals.	The experience gained by accomplishing the goals of the KER will be helpful in other projects dealing with the similar problem.	The goal of KER is to develop new Al/ML tools that will be used in planning and operation of new power systems. Such a solution relies on digitalization of the power system and exploits potential of installed IoT devices to address the topics of relevant European regulation and directives such as Green Deal. The main goal of the EU is to ensure an increase in the share of renewable energy, energy efficiency and slow down climate changes. This KER is	The proposed solution is relatively known, and it still has not been widely implemented. Therefore, there might be a lack of awareness of the product need. Also, some potential users might not accept the product in case its importance is not well-presented.	There are not any specific issues regarding IPR in this stage of the project. However, we will closely monitor the situation and clearly define ownership and usage right, sign NDAs and do other similar measures when needed.	The biggest risk is related to integrating IoT devices in the locations that are part of the demo-site. To train and validate the algorithms, it is necessary to ensure the adequate set of measurements collected during a longer period to cover differences in specific time periods. The way to mitigate the risk is to continuously inform about the integration of the status and to maintain the contact with the partner responsible for the IoT devices installation. Also, the solutions will be implemented and tested on a set of data collected on other locations, meaning that the time for modifying the algorithms once dome- site data is available will be shorter.

Co-funded by the European Union

	algorithms are oriented towards securing the mentioned functionality.					oriented on ensuring the specified goals and to create opportunities for different entities to play a pivotal role in energy transition.			
JSI	The KERs provide a foundation for scalable solutions that can be adapted and expanded as new requirements and technologies emerge.	By deploying AI/ML models at the edge, we plan to leverage real- time analytics and decision support software, especially in context of DLR and DTR.	Transmission system operators, distribution system operator	Jointly developing and testing Al/ML models with modular architectures that can be easily adapted to different edge or cloud environments.	Jointly developing and testing Al/ML models with modular architectures that can be easily adapted to different edge or cloud environments.	The developed tools will enable the implementation of Al-driven real- time monitoring and analytics of the thermal state of assets, providing decision support for grid planning and optimization, which directly supports EU Green Deal objectives.	Limited Understanding of AI/ML Benefits, lack of available data.	JSI plans to secure its potential intellectual property rights through agreements that specify the ownership and usage terms of the developed solutions.	Weather predictions based solely on local data may lack sufficient accuracy, making them unsuitable for practical applications.

Partner	Value proposition	Future exploitation strategy	Target Audience	Synergies with other HEDGE-loT partners	Synergies with other EU researchers/SEMs	Impact on EU and local/regional policies	Market barriers	IPR measures	Possible Exploitation Risks
ICCS	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
TAU	The added value of KERs is to publish top level articles based on field trials.	Results are a starting point for the future research and demonstration projects at national and EU levels.	DSO, automation system manufacturers	Results will be part of Demo Finland.	Open-source licensing enables utilisation of source codes in all future projects.	As a university TAU is disseminating results in international journals and conferences, national seminars, and promoting ideas by utilising the developed services as a starting point in the future research projects.	The most serious market barrier is that DSOs continue solving their congestion problems with grid expansion instead of utilising flexibility services or flexible contracts.	Planning to publish the source code as an open-source code with MIT license	Development might take more time than expected, or the final implementation in edge computing platform may start later than expected, and therefore not all services are completely ready for the demonstration.
VTT	We are developing fully new competences and functionalities around Al- based anomaly detection and piloting them for the first time. We are gaining new knowledge on the topic, we are educating our researchers on it, we are gaining real-life experience from field tests, and we are discussing the topic with leading European partners. All this enables	We are taking the first steps within this project and assume the solution to be developed further in following projects, including also more business development oriented actions later in the timeline.	End users will be DSOs, grid maintenance operators, distribution management system providers, grid protection and automation system providers	We are closely collaborating with ABB on building the solution. We are piloting the solution together with JSE and ENERVA.	We are looking to expand the approach to different use cases, and we are collaborating on applications of Al for similar purposes.	We are looking to further develop it in forthcoming EU projects.	The need of computational power on the substation level remains a research question, and it might be considered too heavy in terms of monetary investment compared to benefits achieved. However, research is targeting to demonstrate the benefits but also to optimise the computational power usage, and at the same the tehcnology develops	At this point, the research results are open and will be published. At later phase, the actual business development activities will include IPR measures more closely.	Practical feasibility in DSO daily business: the complexity brought by the solution compared with the benefits gained.

	us to develop this towards service offering in the future.						towards improved capacitites and reduced costs.		
INESC	This digital platform enables all stakeholders in the value chain for energy flexibility to cooperate. INESC TEC provides digital and energy services for several stakeholders. This platform will act as commercial option for customers, but also serves as on e enabler part of a sandbox for energy services and demonstrations.	This KER is exploited in several projects. This result includes plans to make it available as a service in one cloud provider, or directly to clients wishing to explore the concept. Moreover it will remain in use in sandboxes for demonstration.	Energy Aggregators, System Operators, Flexibility Service Providers, ICT providers.	Yes, the PT pilot cluster: CEVE, SONAE, ELERGONE, REN, RDNESTER	This KER Derives already from the HEU BeFlexible project. The work done in HEDGE.IOT contributes to the development of this solution. It will be explored in other EU initiatives, to support the continuous development of this software.	This software is currently working in the limit of regulation. The results in the dimension of the Aggregator role are expected to contribute to validate / shape changes and adjustments to regulation.	Changes to regulation as to allow the real operational conditions of the software.	Dual License agreement. Open source for research purposes and non-open source license for commerial purposes subjecte to licensing agreement.	The existing Business Model Canvas requires adjustments to the inbound cash flows.
тно	The added value for TNO of having such a set of services is that we may offer this for clients and other stakeholders, such as policy makers and standardisation bodies.	TNO may use this to better position itself for future innovation actions, thus qualifying for more successful bids.	European and national policy makers, industry and in collaborations with RTO's and (applied) science partners.	To be actively explored during the project, this is not yet clearly defined.	To be actively explored during the project, this is not yet clearly defined.	To be assessed at a later stage of the project (e.g. its final year).	TNO is not a private party aiming to commercially drive KER's to the market. IP that is not in the public plane (e.g. being patented) may limit our intention to encourage free and open use of IP generated by us.	Where relevant by patents, however it is more likely that IP will be addressed in public standards for a greater opportunity of adoption.	Possible patent infringements, however at this stage we estimate this risk to be low at this point.
RWTH	Services for data-driven energy management	Integration of selected services into SOGNO platform	SOGNO users	SOGNO platform is already being used in other projects and organisations, and will provide the selected services to them as part of the larger system	SOGNO platform is already being used in other projects and organisations, and will provide the selected services to them as part of the larger system	SOGNO platform is already being used in other projects and organisations, and will provide the selected services to them as part of the larger system	SOGNO currently not specifically laid out for Energy Communities		Very limited risk due to established exploitation within existing platform

NESTER	The implementation of the market simulator will facilitate the integration of new participants in the ancillary services of the SO.	R&D NESTER intends to continue developing the market simulator (MS) platform in other projects, working as a testbed for new actors to test their strategies and capabilities to participate in ancillary services markets and/or other Flexibility Markets (e.g. local markets for DSOs). R&D NESTER intends to continue developing the MS for additional products and updating it according to the evolving regulations that will applied.	Stakeholders, focused on potential market participants (e.g. Aggregators, FSPs) and SOs (e.g.TSOs)	At least with all the partners participating in the PT pilot: CEVE, ELERGONE, REN and INESC	R&D NESTER intends to continue developing the MS for additional products and updating it according to the evolving regulations that will be applied.	The MS platform can be adjusted to integrate other flexibility market products. Its use can facilitate the testing and deployment of the future flexibility energy solutions in flexibility markets.	Regulatory changes may result in the need to update the rules of MS. But the architecture should be flexible enough to accommodate these changes.	The Consortium Agreement mitigates this risk and, if necessary, additional agreements can be established after the end of the project.	Appearing of similar alternative platform (low probability). Mitigation action: monitor the appearing of similar solutions.
AE	Acea Energia can become a market leader in local flexibility services, in the role of the BSP, promoting efficient energy practices and guaranteeing inclusive and non-discriminatory access to the market, in line with EU policies	Acea Energia will have the opportunity to use the know-how acquired to offer end-user efficient and profitable solutions.	The focus will be the flexibility provided by the Energy Communities (ECs), with attention of vulnerable users	Acea Energia plans to collaborate with HEDGE- loT partners in the future to adapt and implement best practices across local energy ecosystems.	Acea Energia will engage with other EU researchers and SMEs to exchange knowledge on improving the efficiency of energy communities	Acea energia will lead projects that promote the optimization of energy communities through local flexibility markets, improving energy efficiency that will contribute to EU policy objectives such as carbon neutrality and resilience of the energy system at local and regional level	Currently only a few end USERS have the tools and knowledge to access flexibility markets and lack awareness of the benefits	Standard IPR protection strategy, including patents and licenses, where applicable.	Risk: resistance to participation by end users due to lack of awareness of the benefits. Mitigation: involve and make users aware of the benefits through advertising awareness campaigns.

Partner	Value proposition	Future exploitation strategy	Target Audience	Synergies with other HEDGE-loT partners	Synergies with other EU researchers/SEMs	Impact on EU and local/regional policies	Market barriers	IPR measures	Possible Exploitation Risks
ED	Offering an open app repository positions ED as a pioneer in the digitalization of energy systems. The repository will enable ED to collaborate with external developers, academia, and other stakeholders, which can facilitate knowledge exchange and help build a stronger network.	Development and enhancement of proprietary solutions Collaboration with external stakeholders and developers	TSO/DSO, Aggregator, Market Operator, Energy End- Users, Energy Communities, Prosumers, Consumers, Service Providers and developers	Not yet clearly defined. To be explored.	Use the generated knowledge and expertise to attract more clients and to better position ED in future innovation projects	The open App Repository can house AI/ML tools that support the integration of renewable energy sources (RES) and smart grid management, which are essential for the EU Green Deal's goal of carbon neutrality by 2050 ED can contribute to EU digitalization goals by incorporating edge and cloud-based AI tools from the repository into new projects aimed at optimizing grid operations, managing energy consumption, and improving asset management using AI- driven insights	Energy systems across Europe are highly diverse, with varying technologies, standards, and regulatory requirements in different countries. This makes interoperability a significant challenge for a pan-European app repository. The energy sector is heavily regulated, with strict rules and policies in place for data sharing, Al use, and energy market operations across the EU.	To be defined. Most likely open- source for research purposes, not open-source for commercial purposes	Energy stakeholders, such as TSOs and DSOs, might be reluctant to adopt AI/ML tools from the open repository due to concerns over their reliability, scalability, and suitability for mission-critical applications.
DST	The open App Repository will enhance DST's offerings by providing a flexible, scalable platform for deploving Al/ML	Market the repository as a resource for energy stakeholders to access advanced tools for	Energy stakeholders, including TSO/DSO, energy service providers	Collaborate with partners in WP4 to populate the repository with AI/ML tools for both edge and cloud use.	Encourage collaboration with EU researchers and SMEs to integrate tools into the repository,	Support Green Deal goals by enhancing grid management and renewable integration. Align with the EU Digital Strategy to drive the digitalization	Limited awareness of the advantages AI/ML offers for energy optimisation. Significant upfront	NDAs will be used to protect know- how and intellectual property during collaborations.	Technological Risk: Challenges in ensuring seamless integration of tools. Mitigation: Testing and adherence to interoperability standards. Likelihood: Moderate.

	tools across edge, cloud and fog level	operational efficiency. Promote the repository in future EU projects for developing innovative solutions and fostering collaborations		Collaborate with partners in WP3 and WP4 to ensure the repository complies with interoperability standards for seamless integration. Develop use cases with partners in WP5 to showcase the repository's capabilities and its practical applications in real- world scenarios.	fostering a robust ecosystem. Use the repository in future Horizon Europe projects to promote shared innovation in energy solutions.	of energy infrastructure and meet sustainability goals.	implementation costs, particularly for smaller utilities or ED regional operators. Concerns regarding data privacy when integrating AI/ML tools with sensitive operational information.	Where applicable, licensing agreements will be implemented for third-party use of IoT solutions. Where applicable, patents will be secured for the developed IoT technologies.	Economic Risk: Difficulty in monetising the repository due to high costs and market resistance. Mitigation: Flexible pricing models like subscriptions or freemium options. Likelihood: High, but manageable. Regulatory Risk: Changes in data- sharing regulations affecting operations. Mitigation: Continuous monitoring and compliance with legal frameworks. Likelihood: Low.
TNO	The added value for TNO of having such a repository that we may offer this for clients and other stakeholders, such as policy makers and standardisation bodies.	TNO may use this to better position itself for future innovation actions, thus qualifying for more successful bids.	European and national policy makers, industry and in collaborations with RTO's and (applied) science partners.	To be actively explored during the project, this is not yet clearly defined.	To be actively explored during the project, this is not yet clearly defined.	To be assessed at a later stage of the project (e.g. its final year).	TNO is not a private party aiming to commercially drive KER's to the market. IP that is not in the public plane (e.g. being patented) may limit our intention to encourage free and open use of IP generated by us.	Where relevant by patents, however it is more likely that IP will be addressed in public standards for a greater opportunity of adoption.	Possible patent infringements, however at this stage we estimate this risk to be low at this point.

Partner	Value proposition	Future exploitation strategy	Target Audience	Synergies with other HEDGE-IoT partners	Synergies with other EU researchers/SEMs	Impact on EU and local/regional policies	Market barriers	IPR measures	Possible Exploitation Risks
ED	ED has already worked on Data connectors in the past and can use HEDGE-IoT to build new more advanced solutions, based on the knowledge and expertise already gained.	ED will position itself as a pioneer in the Data Spaces field. Through HEDGE-IoT we can advance our preexisting solutions and leverage that for future Innovation project but also commercially	TSO/DSO, Aggregator, Market Operator, Energy End-Users, Energy Communities, Prosumers, Consumers, Service Providers and developers, Technology Providers	Not yet clearly defined. To be explored.	Use the generated knowledge and expertise to attract more clients and to better position ED in future innovation projects	The Data connector can contribute to the digitalisation of the energy sector It can support the provision of flexibility though seamless data exchanges	Data security and privacy concerns, complexity of multi-stakeholder collaboration, integration with legacy systems	To be defined. Most likely open- source for research purposes, not open-source for commercial purposes	There could be issues around ownership of the data and the intellectual property. Data privacy and security risks regulatory compliance risks
DST	The KER could enable secure and efficient interconnectivity between distributed systems, enhancing DST's ability to offer scalable, interoperable solutions. Strengthens DST's position as a provider of secure data sharing and interoperability solutions in the digital energy sector.	Integrate the data connector into existing services, focusing on secure data transfer and system integration for energy management solutions.	TSO/DSO SMEs	loT partners: integrate the data connector with their platforms, focusing on security and interconnectivity and as well as ensure compliance with interoperability standards and smooth integration	Use the data connector in collaboration with EU researchers and SMEs to promote secure data exchange in future projects. Incorporate the connector into upcoming EU initiatives, especially in areas such as smart grids and renewable energy.	Support renewable energy integration by enabling secure data exchange. Promote digitalization, enhancing data interoperability and security. Facilitate secure, scalable energy systems to support regional energy goals.	Lack of awareness regarding the importance of secure data interoperability.	NDAs will be used to protect know- how and intellectual property during collaborations. Where applicable, licensing agreements will be implemented for third-party use of loT solutions. Where applicable, patents will be secured for the developed loT technologies.	Technological Risk: Challenges with compatibility between the data connector and legacy systems. Mitigation: Testing and adaptation with partners. Regulatory Risk: Changes in data privacy or security regulations. Mitigation: Continuous monitoring and adaptation to comply with new standards

IDSA	An existing Data Connector will be further developed to implement the Dataspace Protocol	The learnings from the development and the specifications will be shared within IDSA and included in the IDS Reference Architecture Model	Data space participants: Data providers and data consumers	To be defined	We will share the learnings and specifications with our community and with partners of new EU projects	The Data Connector can be deployed in any initiative where secure data sharing is required	Lack of understanding of the technology and the features.	All our content is open-source. It will be the decision of the data connector developers.	Technical issues during the development or the implementation phase. Difficulty in the adoption by project partners, that will be mitigated with knowledge transfer.
HSE	Enhance our capabilities in facilitating secure and interoperable data exchange among distributed systems. Enable us to offer innovative solutions that ensure secure interconnectivity, adhering to international data standards and governance models Allow us to expand our service offerings, attract new partners, and participate in future projects that emphasise secure and standardised data exchange.	Integrating knowledge and codebase contributed to the KER into our existing and future solutions to enhance secure and interoperable data exchange among distributed systems. The KER will enable us to develop new products that address the growing need for secure, standardised data sharing, thereby expanding our market offerings. Additionally, we intend to leverage our contribution to the KER in future projects that focus on data interoperability and security, aligning with EU initiatives like the Digital Strategy.	TSO/DSO, Aggregator, Market Operator, Energy End-Users, Energy Communities, Prosumers, Consumers	Not yet defined	We plan to leverage our contribution in the KER to enhance collaboration with other EU researchers and SMEs within our network and through new EU projects. Exploiting our knowledge and codebase from our contribution to the KER we expect to gain expertise in secure and interoperable data exchange among distributed systems, which is essential for collaborative research and development efforts. This collaboration will involve participating in EU-funded initiatives, contributing to the	The acquired expertise from our contribution to the KER can enable us to design and implement seamless communication between energy assets and systems, promoting sustainability and innovation at both local and regional levels. By participating in EU-funded initiatives and collaborating with stakeholders to drive digital transformation, support policy goals, and foster a more interconnected and sustainable energy ecosystem across Europe	Integration complexities with existing legacy systems might deter organizations due to concerns about compatibility and the resources required for implementation. The installation and maintenance of additional infrastructure to deploy IDS-based connectors could be prohibitive for simpler users with limited expertise and budgets. Variations in data standards and protocols across different industries and regions could also hinder adoption, as clients may be uncertain about interoperability	To be defined	A primary risk is technical integration challenges, as clients might face difficulties integrating the connector with their existing legacy systems, leading to implementation delays or additional costs. Mitigation strategies include designing software components for ease of integration, providing comprehensive documentation, and offering technical support. Another risk is market acceptance and awareness; potential users may lack understanding of the benefits of IDS-based interconnectivity or be resistant to adopting new technologies. Mitigation strategies include conducting awareness campaigns, demonstrations, and pilot programs to showcase the value of

					development of open data standards, and sharing expertise to integrate complementary technologies. Through these synergies, we aim to strengthen our collective capabilities, foster innovation, and support EU digital initiatives		HEI	DGE-Io1	our solution. Additionally, regulatory and compliance hurdles, such as Varying data protection laws across regions, may affect adoption. Mitigation strategies include staying updated on regulatory changes, ensuring our solution complies with all relevant standards, and incorporating robust security measures.
QUE	QUE has prior experience with data space ecosystems (design, implementation and deployment). The objective is to develop an open, secure, and trusted platform for data exchange between energy assets and systems, utilizing Decentralized Identifiers (DIDs) and Verifiable Credentials (VCs)	Enhance our existing expertise in data connectivity by developing advanced, secure, and decentralized solutions for energy data exchange	Key beneficiaries include DSOs/TSOs, aggregators, and OEMs	Not yet defined	Elevate collaboration within our network and integrate it into new EU- funded projects by providing a secure, decentralized platform for data exchange	Promote secure and decentralized data exchange, enhance digital transformation, and promote interoperability and trust across stakeholders in the green deal and digital strategy EU initiatives	Lack of Awareness: Potential users may not fully understand the need or benefits of decentralized data exchange platforms Regulatory Uncertainty: Variations in regulatory frameworks across regions may pose challenges to adoption Interoperability Issues: Integration with existing systems and technologies may face technical barriers Fragmented Ecosystem: Limited collaboration	To be defined	Low market adoption Regulatory changes or misalignment Technical challenges in integration Fragmentation of stakeholder interests

			between key	
			stakeholders,	
			such as DSOs,	
			TSOs, and OEMs,	
			could slow	
			adoption	

Partner	Value proposition	Future exploitation strategy	Target Audience	Synergies with other HEDGE-IoT partners	Synergies with other EU researchers/SEMs	Impact on EU and local/regional policies	Market barriers	IPR measures	Possible Exploitation Risks
ED	Integration into existing solutions. ED has been developing data governance middlewares for many previous projects. The advancements in HEDGE-IoT can enhance the existing solutions and offer more capabilities. This will extend the solutions that already exist	Create new products and services based on the middleware, such as data-as- a-service (DaaS) or interoperability-as-a-service, tailored for the energy sector. Offer tailored solutions to energy stakeholders and system operators (SOs) that emphasize compliance with IDS standards and seamless data sharing. Leverage the middleware to participate in multi-stakeholder projects that require secure, interoperable data exchange	TSO/DSO, Aggregator, Market Operator, Energy End- Users, Energy Communities, Prosumers, Consumers, Service Providers and developers, Technology Providers	Not yet clearly defined. To be explored.	Use the generated knowledge and expertise to attract more clients and to better position ED in future innovation projects	Use the middleware to enhance data exchange between distributed energy resources (DERs), renewable energy providers, and grid operators. Implement the middleware to streamline real- time monitoring and data analytics for energy systems Use the middleware to implement projects that prioritize data sovereignty, ensuring compliance with the EU's European Data Strategy and GDPR.	Ensuring seamless integration with legacy systems, various IoT devices, and proprietary platforms in the energy ecosystem can be technically complex.	To be defined. Most likely open- source for research purposes, not open-source for commercial purposes	Insufficient market adoption Integration challenges with legacy systems
IDSA	Data Governance will be implemented in a technical manner, which extends the work of our IDS-RAM and IDS Rulebook	The specifications of the Data Governance Middleware and the data-service catalogue will serve as input for the IDS-RAM and the IDS Rulebook	Data space participants: Data providers and data consumers	To be defined	We will share the learnings and specifications with our community and with partners of new EU projects	The Data Governance Middleware can be deployed in other EU initiatives where a Data Space is deployed	Lack of understanding of the technology and the features.	All our content is open source. It will be the decision of the developers.	Technical issues during the development or the implementation phase. Difficulty in the adoption by project partners, that will be

							HE	DGE-lo1	mitigated with knowledge transfer. Helatic Agrosch Digitalication of the Cherge Coxystem Brough adoption of for Solutions
DST	This KER will enable DSTech to offer more robust and secure data management solutions, driving innovation and enabling the company to enter new markets with a focus on data-driven services.	The KER strengthens DSTech's ability to deliver advanced data governance solutions, addressing the rising demand for secure, interoperable data management. It enables integration across industries, enhancing DSTech's product portfolio and broadening market reach.	loT developers and integrators	DSTech will collaborate with other HEDGE-IoT partners to validate and test the KER in real- world applications, ensuring the middleware works across a wide range of i use cases. If applicable, DSTech will plan to integrate the solution into ongoing and future research projects to further its development and applicability.	DSTech will collaborate with other HEDGE-IoT partners to validate and test the KER in real- world applications, ensuring the middleware works across a wide range of i use cases. If applicable, DSTech will plan to integrate the solution into ongoing and future research projects to further its development and applicability.	Participate in Horizon Europe and other EU initiatives focused on data governance, IoT, and digitalization.	The KER aligns with the EU's Digital Strategy and Green Deal initiatives by enabling secure data exchange and promoting the responsible use of data in digital transformation projects. DSTech will leverage the middleware to support EU and local/regional initiatives focused on smart cities, IoT, and sustainable development.	NDAs will be used to protect know- how and intellectual property during collaborations. Where applicable, licensing agreements will be implemented for third-party use of IoT solutions. Where applicable, patents will be secured for the developed IoT technologies.	Technological Obsolescence: Rapid technological changes in data management and interoperability could make the KER outdated. Mitigation: Regular updates to the solution and active participation in standardization processes.

Partner	Value proposition	Future exploitation strategy	Target Audience	Synergies with other HEDGE-IoT partners	Synergies with other EU researchers/SEMs	Impact on EU and local/regional policies	Market barriers	IPR measures	Possible Exploitation Risks
ED	ED has been designing RAs for many research projects that focus on interoperability and data exchanges in the energy sector and others. HEDGE- IoT will advance the expertise of ED in this domain	Enhancing products and service offerings Driving interoperability and standardization Aim towards an RA that can be scaled to the whole of Europe	TSO/DSO, Aggregator, Market Operator, Energy End-Users, Energy Communities, Prosumers, Consumers, Service Providers and developers, Technology Providers	Not yet clearly defined. To be explored.	Use the generated knowledge and expertise to attract more clients and to better position ED in future innovation projects	The RA supports the integration of Renewable Energy Sources (RES), enhances grid flexibility, and enables better energy demand-response mechanisms, directly contributing to the EU's climate neutrality goals. By enabling interoperability and leveraging IoT technologies, the RA promotes secure and efficient data exchange, a cornerstone of the EU's vision for a digital, data-driven energy sector.	Limited adoption from energy stakeholders Fast-changing environment	To be defined. Most likely open- source for research purposes, not open-source for commercial purposes	Limited IoT standardization Cyber-security concerns Rapid evolution of standards
RWTH	Structuring work on the application of Data Spaces in the energy domain	Incorporating RA among others to have a foundation of what structures are necessary for Data Spaces in the Energy Domain to be applicatble in reality	Researchers working on Data Spaces		Future projects working on data in the energy domain will look to previous RAs to develop their own	Future projects working on data in the energy domain will look to previous RAs to develop their own	Intended as a mostly academic result		Potential Risk: unclear how applicable the RA will be to other projects / ecosystems - will depend on the final structure

IDSA	The current work on interoperability will be extended and tested	The RA can provide input for the new version of IDS RAM (v5)	Data space participants: Data providers and data consumers	To be defined	We will share the learnings and specifications with our community and with partners of new EU projects	The RA can be used as basis for other EU initiatives	Lack of understanding of the technology and the features.	All our content is open-source. It will be the decision of the developers.	Technical issues during the development or the implementation phase. Difficulty in the adoption by project partners, that will be mitigated with knowledge transfer.
------	--	---	---	---------------	---	--	--	--	--

Partner	Value proposition	Future exploitation strategy	Target Audience	Synergies with other HEDGE-IoT partners	Synergies with other EU researchers/SEMs	Impact on EU and local/regional policies	Market barriers	IPR measures	Possible Exploitation Risks
ED	ED has been designing RAs for many research projects that focus on interoperability and data exchanges in the energy sector and others. HEDGE-IoT will advance the experise of ED in this domain	Enhancing products and service offerings Driving interoperability and standardization Aim towards an RA that can be scaled to the whole of Europe	TSO/DSO, Aggregator, Market Operator, Energy End-Users, Energy Communities, Prosumers, Consumers, Service Providers and developers, Technology Providers	Not yet clearly defined. To be explored.	Use the generated knowledge an expertise to attract more clients and to better position ED in future innovation projects	The RA supports the integration of Renewable Energy Sources (RES), enhances grid flexibility, and enables better energy demand-response mechanisms, directly contributing to the EU's climate neutrality goals. By enabling interoperability and leveraging IoT technologies, the RA promotes secure and efficient data exchange, a cornerstone of the EU's vision for a digital, data-driven energy sector.	Limited adoption from energy stakeholders Fast-changing environment	To be defined. Most likely open-source for research purposes, not open-source for commercial purposes	Limited IoT standardization Cyber-security concerns Rapid evolution of standards
DST	The KER strengthens DSTech's capabilities in offering advanced data governance solutions, enabling integration across industries and improving the	Plan to integrate the KER into its existing product offerings, explore licensing opportunities, and expand its business by partnering with other companies	loT developers	Collaboration with HEDGE-IoT partners to validate and deploy the KER in real-world scenarios, enhancing its development and ensuring cross-	DSTech will collaborate with EU researchers and SMEs through future EU projects to advance the KER's application in digitalization, IoT, and data governance.	DSTech aims to support EU initiatives by leveraging the KER to promote secure, interoperable data solutions in smart city and IoT projects.	Barriers include lack of awareness about the KER, high initial costs, regulatory uncertainties, and integration	NDAs will be used to protect know-how and intellectual property during collaborations. Where applicable, licensing agreements will be implemented for third-party use of IoT solutions. Where	Technological Obsolescence: Rapid technological changes in data management and interoperability could make the KER outdated. Mitigation: Regular updates to the solution and

	company's product portfolio for future innovation.	and research institutions for future collaborations.		sector interoperability.			challenges with legacy systems.	applicable, patents will be secured for the developed IoT technologies.	active participation in standardization #processes. twent fagoerent of the Diplatentian of the Lerry Consten through eduption of her Lerry Consten
IDSA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Partner	Value proposition	Future exploitation strategy	Target Audience	Synergies with other HEDGE-IoT partners	Synergies with other EU researchers/SEMs	Impact on EU and local/regional policies	Market barriers	IPR measures	Possible Exploitation Risks
ICCS	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
VTT	We are building our solution on new approach where live data stream is shared to third parties for online service provision. We are piloting this in the Finnish case, VTT taking the role of third party service provider.	We are mostly a user for the data. We obviously want to expand to further use cases in which similar approach can be used.	Third parties including different service providers, also start-ups.	We are testing the solution mainly developed by ABB, piloting it together with TAU, JSE and ENERVA.	We are looking to use similar approaches in other EU projects, and follow closely similar developments.	We are looking to further develop it in forthcoming EU projects.	The key question may be how open and standardized the solution can be, or whether it will remain to some extent proprietary, which will limit its replication.	No IPR issues at the moment, we are mainly using the data interface.	Scalability and replicability of the solution - whether it will be fully open and standard or more like proprietary solution.
CLUBE	Provided a framework for leveraging digital technologies to improve efficiency and resilience. CluBE can drive future regional energy system transformations through digitalization, promoting sustainable and efficient energy practices aligned with EU policies	CluBE will integrate best practices acquired by the project to future projects aimed at digitalizing local and regional energy systems. It will serve as a foundation for future collaborations with regional stakeholders and EU partners to scale these innovations	Local energy utilities, grid operators, regional energy policymakers, SMEs involved in energy innovations	CluBE plans to collaborate with HEDGE-IoT partners in the future to adapt and implement best practices across regional energy ecosystems. These collaborations will enable knowledge sharing, co- development of digital tools and application of best practices	CluBE will engage with other EU researchers and SMEs to exchange knowledge of implementation of best practices for energy digitalization to foster a broader adoption of innovative digital solutions in the energy sector.	Results will be used at tools in aligning CluBEs future projects with EU initiatives. CluBE will drive projects that enhance renewable energy integration, improve energy efficiency and contribute to EU policy goals like carbon neutrality and energy system resilience at the local and regional levels	Lack of awareness among regional energy stakeholders of the benefits of energy digitalization. High initial costs for implementing digital infrastructure in legacy energy systems. Resistance to change from traditional energy utilities and local authorities. Regulatory challenges in aligning local energy policies	Standard IPR protection strategy, including patents and licenses, where applicable.	Risk: Resistance to adoption by local stakeholders. Mitigation: Engage stakeholders early in the process through awareness campaigns. Risk: Incompatibility of digital solutions with existing infrastructure. Mitigation: Conduct thorough infrastructure assessments and collaborate with tech providers to ensure compatibility. Risk: Financial constraints. Mitigation: Leverage EU/National funding and public-private partnerships to reduce financial barriers.

							with digital transformation initiatives.		Risk: regulatory hurdles. Mitigation: Collaborate closely with local and regional policymakers to align with regulations.
CEL	Assessments with respect to ethics and regulatory aspects by adopting the ERGO (Ethics and Regulatory Governance) framework will allow to identify "best practices" to comply with EU values and rules.	CEL will use the ERGO framework, fine-tuned and extended in HEDGE-IoT for assessments in other R&I projects and in consultancy services	Practitioners, Standardisation WGs, Industries, SMEs	ERGO framework is yet a key asset of the CEL portfolio and used in many EU R&I projects and consultancy services.	ERGO framework may be configured and fine-tuned with respect to project needs and context	ERGO framework may be configured and fine-tuned with respect to project needs and context	No market barriers. ERGO is already adopted for consultancy services	ERGO is included in the background of the CA	No risks have been identified
АВ	To be able to demonstrate innovation and therefor make the Electricity Campus Arnhem's Buiten a (even) more relevant location for other organizations to become involved (or even become tenant) at the Campus	It can become an integral of the (real life) test/demonstrator location	SME's and RTOs in combination with (national) policy makers and DSO's	In potential with TNO and VU/A	Based on this KER we might consider participating in other (to be defined and selected) of facilitate EU projects	Cause of the specifics of the Campus (not a formal status of Closed Distribution System). Experiments	Potential users not being aware of these solutions and/or not able to use these learnings cause of specific location- based circumstances	Where relevant and possible by patents. However, it should not frustrate the possibility for upscaling	Acceptance and ongoing process of other "competition" of other research campuses/locations

Partner	Value proposition	Future exploitation strategy	Target Audience	Synergies with other HEDGE-IoT partners	Synergies with other EU researchers/SEMs	Impact on EU and local/regional policies	Market barriers	IPR measures	Possible Exploitation Risks
ELES	The added value for ELES includes enhanced grid resilience through IoT- enabled solutions that improve adaptability and reliability, contributing to a stronger infrastructure. It positions ELES as a leader in digital grid transformation by participating in the extension of industry standards. Additionally, the integration of advanced IoT applications, such as dynamic line rating (DLR), optimizes Ioad management and reduces operational costs. The project also enables significant skill development for ELES, providing expertise in AI/ML, IoT, and cloud- edge computing.	Integrating its outputs into ongoing grid modernization efforts. The recommendations and solutions developed will be implemented to enhance dynamic line rating (DLR) capabilities, shifting from centralized systems to a cloud- edge approach for faster and more accurate grid assessments. ELES will apply the new IoT standards and interoperability frameworks to upgrade its SCADA/EMS systems, improving real-time decision-making and grid flexibility. Additionally, the acquired expertise will be incorporated into ELES' strategic planning for future projects, enabling the development of	Direct beneficiaries are grid operators who will gain improved tools for dynamic line rating (DLR) and real-time grid management. The new IoT-enabled standards will also benefit SCADA/EMS users through enhanced interoperability and data insights. Additionally, regulatory bodies can leverage the recommendations to enhance grid stability.	ELES plans to collaborate with HEDGE-IoT partners by sharing real-world data and expertise for testing IoT- enabled solutions like dynamic line rating (DLR) in cloud-edge environments. Joint pilots and demonstrations will help refine the technology and align best practices across TSOs. ELES will also engage in knowledge exchange sessions to ensure mutual skill development and implementation consistency.	Sharing results with regional partners, using the outcomes to enhance future EU project proposals and secure new collaborations in digital grid initiatives	ELES plans to leverage outcomes to align its projects with EU initiatives like the Green Deal and EU Digital Strategy by advancing digital grid technologies that enhance renewable integration and grid resilience. The IoT-enabled solutions and new standards will be key components in projects focused on energy efficiency and sustainability. ELES will use the gained expertise to actively participate in digitalization initiatives, contributing to policy development and EU-wide interoperability efforts.	Limited awareness or understanding of the need for advanced IoT- enabled grid solutions among industry stakeholders. There may be concerns regarding the high initial investment costs and the complexity of integrating new technologies with existing grid infrastructure. Regulatory challenges and differences in standardization across regions might hinder widespread adoption. Finally, data privacy and cybersecurity concerns related to IoT applications might impact user	ELES plans to protect its potential intellectual property rights through robust collaboration agreements that define ownership and usage terms of the developed solutions.	Potential risks include technical challenges in integrating IoT solutions with existing infrastructure, which could delay implementation; ELES plans to mitigate this by conducting extensive compatibility testing. Data privacy and cybersecurity concerns might hinder exploitation; ELES will implement robust data protection measures and comply with EU regulations to mitigate this.

		innovative digital services.					acceptance and deployment		
NESTER	The added value for R&D NESTER is to promote awareness amongst stakeholders of the possibility of using alternative sources of flexibility to increase the grid resilience both at transmission and distribution levels.	Standardadisation is a key step to ensure interoperability between devices and systems. Most of the times, SOs only adopt standards when they are mature.	Stakeholders, but mostly focused on SOs (e.g.TSOs, DSOs)	NESTER is supporting closely REN and other partners engaged in the PT pilot: CEVE, ELERGONE and INESC.	R&D NESTER will use the expertise acquired in this project to promote further developments in future EU funded projects, and by sharing with our community of industrial and innovation partners both in Portugal and Internationally (e.g. ETIP-SNET).	R&D NESTER will continue supporting new EU initiatives and promoting solutions that help achieving these objectives.	Probably some solutions will still take some time to reach the market. Standardisation, typically, is a marathon process.	The Consortium Agreement mitigates this risk and, if necessary, additional agreements can be established after the end of the project.	The integration of IoT devices by SOs without sufficient testing represents a potential risk. Adopting and implementing cybersecurity standards by-design could mitigate this risk.
REN	The added value for REN is to increase the grid resilience across all levels, enabling also the flexibility of pro- consumers. Future works includes adding more loT devices in the substations and overhead lines towers to complement the actual SCADA data to support the TSO operators.	Standards are important to guarantee interoperability of devices and systems, and reduce cost in buying and integrating IoT devices in the network. REN is adopting standards when they are mature by the industry.	The direct beneficiaries of the KER are (TSO & DSO) grid operators, based on the enhanced decision support tools develop by the project.	REN is working closely with partner NESTER and other related partners of the Portuguese pilot. We will share the KER with all other HEDGE-IoT partners and ENTSO-e community.	REN will use the expertise gained in this project to promote future EU funded projects, and the research community of the electrical grid in Portugal.	REN is aligned with new EU initiatives and will continue to promote these objectives. We will continue our work on renewable integration while maintaining grid resilience, with advanced IoT- enabled solutions.	Cybersecurity concerns related to IoT applications, the need to keep track of firmware versions and security patches. User data privacy and the value of data. Standardisation of the IT protocol including communication layers. CAPEX and OPEX costs compared with the economic value to use IoT at consumer level.	The Consortium Agreement mitigates this risk and, if necessary, additional agreements can be established after the end of the project. In any case, EU- funded software should be open source.	As REN manages a critical asset such as the TSO network, the integration of IoT devices into the network represents a potential risk. Adopting cybersecurity standards can mitigate this risk.

HOPS	As a Transmission system operator HOPS oversees balancing the transmission system and enabling secure operation of transmission grid. The new technologies are enabling more observable and controllable grid on distribution level. HOPS will benefit in more resilient and controllable network through improvements of planning and system operation processes. The experience, knowledge and collaboration with different actors in the project is of great value to HOPS.	Experience and knowledge gained in the project will be used in future developments of system operation and planning solutions. HOPS is in a continuous process of improvement of collaboration with distribution system operator. The experience, solutions from pilots will be used to improve the systems, applications and process in HOPS.	Direct beneficiaries of the KER in HOPS will be all system operation and planning department as they will benefit from results of the project and improvement in processes. IT and OT departments will benefit from knowledge and recommendations gained in the projects that will be used in implementation of new algorithms and exchange of information with different grid users and DSO's	HOPS plans to use KER in colorations with other EU transmission system operators through existing working groups in ENTSO-E. We plan to further investigate and upgrade the solutions and recommendations from HEDGE- IoT with universities through pilots and other research projects.	The recommendations from HEDGE-IoT will be used in other EU funded projects where feasible. HOPS especially see benefits in further development of standards, interfaces and solutions that will be the result of Hedge - IoT and their extension to new domains and processes.	Standardization is one of the key prerequisite to digitalization which is necessary for integration of renewables. HOPS will use the recommendation and solutions to promote further standardisation in different in initiatives and working groups contributing to development of new laws, policies and recommendations.	Possible market barriers could be availability of a compatible solutions on the market, lack of awareness, coordination and requirements from end users.	HOPS will not have the need to protect intellectual property rights in the project.	Time, effort and resources necessary to implement the solutions and put them into operation is crutial for implementation of recommendations into real life solutions. The clarity of the recommendations is important to implement solutions that can be put into operation. Adoption of technologies and standards from vendors and utilities could be achieved by formal standardisation of recommendations from Hedge-IoT through different standardisation bodies (IEC, IEEE, etc) of relevant independent organisations (ENTSO- E, EU digital stategy, and on regional level).
CEL	Assessments with respect to ethics and regulatory aspects by adopting the ERGO (Ethics and Regulatory Governance) framework will allow to identify "policy options" to comply with EU values and rules.	CEL will use the ERGO framework, fine- tuned and extended in HEDGE-IoT for assessments in other R&I projects and in consultancy services	Policy makers, standardisation WGs, Practitioners	ERGO framework is yet a key asset of the CEL portfolio and used in many EU R&I projects and consultancy services.	ERGO framework may be configured and fine-tuned with respect to project needs and context	ERGO framework may be configured and fine-tuned with respect to project needs and context	No market barriers. ERGO is already adopted for consultancy services	ERGO is included in the background of the CA	No risks have been identified
ARETI	Standard interface and protocol for IoT device connect to the DSO grid, can increase the grid monitoring, observability and can unlock the	The DSO can adapt the standards to enable the interaction with the IoT devices. An onboarding process could be	The DSOs for the lot devices installed on the grid equipment's, and the end users for the loT	Leveraging on the previous and ongoing experiences, the standard IoT "smart grid ready"	All the EU projects, the technical committee could be involved in the definition of the	All the devices able to provide services to the network operator, must adopt the IoT "smart grid ready"	The protocol fragmentation currently ongoing in the IoT solutions, creates a lock in condition	The standard has to be an open standard without costs for the users	The standardiztion of the IoT devices is an open issue, so several initiatives are ongoing on this item. To foresee a cooperation between

flexibility from the small	defined to activate	solutions able to	could be shared	standard IoT	defined in the	and hinders the	699 ⁹⁹ 999	the different
users, avoiding the grid	the IoT "smart grid	support the smart	and approved by	"smart grid ready"	Hedge loT project	interaction with	2° 2° 3°3	experience is very
reinforcement	ready"	grid	all the Hedge IoT			each other.	CELLAT	important to share and
		functionalities	partners			Moreover, the	GE-IOI	disseminate the work
						awareness of the		on the Hedge IoT
						stakeholders		project
						about the		
						opportunity on		
						the grid services,		
						have to increase		
						to unlock the end		
						user potential.		

Partner	Value proposition	Future exploitation strategy	Target Audience	Synergies with other HEDGE-IoT partners	Synergies with other EU researchers/SEMs	Impact on EU and local/regional policies	Market barriers	IPR measures	Possible Exploitation Risks
TNO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
RWTH	FAIR data, allowance for data exchange between partners	Align with existing standard and reuse in future projects/work	Data manager, backend software developer	To uniform ontology standard within the project	Publication, knowledge transfer	Publication, knowledge transfer	Not-ease-of-use to everyone, user must be an expert	N/A	Possibility of the standard to become outdated after the project
ΑΡΙΟ	Adopting semantic standards would standardize communication with other systems and devices, bridging silos with other domains. Then it would also allow data discovery and automated reasoning scenarios, which is something we are looking forward to experiment with.	We plan to use the ontology to enable automated reasoning within the modules of our platform and to increase interoperability with third party systems	End users will be energy market stakeholders as well as energy community members.	These outputs will be used in our platform which will be used as basis for 3 of our SUCs in cooperation with Acea Energia and Areti.	By aligning our products to a set of semantic and ontology standards we will be able to push its adoption throughout our network. Furthermore, it will make it easier to engage new EU projects. We will also use the outputs in upcoming Open Calls (for 2 of them we are in shortlist, not yet winners)	Adopting these standards as first- class models within our platform.	Lack of incentives in adopting a new data model for existing consumers of our platforms. In this case pushing the standard towards them might be difficult.	We do not foresee IPR issues.	Cost benefit ratio might be different from what we anticipate. A mitigation would be to slowly rollout a parallel data interface as we did for a Web Of Things middleware. The likelihood should be low since we are focusing on a specific perimeter for standardization.
KONC	The development of a semantic model of the substation that will enrich time series data collected from edge solutions and IoT devices.	The development of the platform within the project will be used in future projects to accelerate digitalization in line with IEC standards.	Data scientist, DSO.	The exchange of knowledge and technical expertise in solving issues related to semantic interoperability and standardized data exchange.	Publication, technical workshops.	Publication, technical workshops.	Absence of awareness of product need.	License based product.	Some of the data required for developing the model will be collected from technologies also being developed within the project, which poses a risk of technological limitations. Delays or issues with the technology development could impact data availability and model readiness.

Partner	Value proposition	Future exploitation strategy	Target Audience	Synergies with other HEDGE- IoT partners	Synergies with other EU researchers/SEMs	Impact on EU and local/regional policies	Market barriers	IPR measures	Possible Exploitation Risks
VTT	Our approach is mainly to monitor the grid status better. This can help to utilize flexibility on right time and on right areas, but the impact is bit indirect.	We foresee that controls towards flexible components could become somewhat integrated with our prediction module, but this is a longer- term vision.	DSOs, grid operators, distribution management system providers	This is related to pilot we have together wit ABB, TAU, JSE, ENERVA.	Use of flexibility is studied in our other EU projects. Combining these with HEDGE developments is an interesting option.	We are looking to further develop it in forthcoming EU projects.	Market risks relate to general regulation and business models around flexibility; how flexibility can be used for DSO purposes, who operates them, what is the position of independent aggregators, etc. There are still many open questions also on national levels.	Early research, no IPR issues so far.	Regulation and local flexibility market development will define the operational circumstances.
ENERV	For Enerva as an independent electricity network operator, IoT/Edge technologies enable the prediction of faults in the electrical network and a faster response, and the service can be duplicated for all our customers. In addition to this, we are able to enable the utilization of congestion	We implement the fault prediction/anomaly detection model in daily operations and develop it further in production. Regarding the congestion management, a model will be created that will enable the conceptualization of a new service in the future that will	Finnish DSOs, electricity production sites and BESS-sites.	The services will be taken in to daily operations together with the JSE (a partner), and further development is possible with other Finnish partners. In addition to this, we need services from, for example, ABB (a partner)	We will offer the service to other Finnish DSOs in the future. We are also looking at the possibilities for further development in other EU projects.	The results of the project will influence the social debate about the introduction of flexibilities together with the JSE. At the distribution network level, new tools are needed for the introduction of flexibilities, and the project will share	Sufficient cost- effectiveness must be achieved in fault prediction so that the large scale implementation and product conception of the service is profitable. Regarding flexibilities, legislation can prevent its use and regulation can make it too expensive to use.	Enerva does not get IPRs directly from the project, but with the project we improve efficiency in the fault management process and gain new products to offer to our customers.	In terms of fault predicting: technological risks (the developed technology does not work), cost-effectiveness risk (the service becomes too expensive), unpredicted technological investments that are too large. Regarding congestion management: legislation prevents large- scale use of the service, regulation does not support local flexibility and makes it unprofitable for the DSO. In general: there is a risk that cyber security is compromised with new

	management in the	he available for all		for the		information	This is also why it is	000000	software and components
	electricity network	DSOs in Finland.		materials and		about different	important to	2° 2 8 29	and the risks do not match
	as a service for	Decerniana		components		nossibilities	include the project		the benefits obtained
	DSOs so that the			used in niloting		poolibilitieo.	in the national	HEDGE-	towards Empowerment of the Digitalization of the Energy Ecosystem
	green transition			abea in prioting.			discussion		consugn appprovion of 101 sourcons
	progresses faster								
	loT/Edge	We implement the	Regarding the	The services	We will use KER's	The results of	Sufficient cost-	JSE does not get	In terms of fault predicting:
	technologies	fault	congestion	will be taken in	to enhance our	the project will	effectiveness must	IPR's directly from the	technological risks (the
	enable prevention	prediction/anomaly	management.	to daily	operative	influence the	be achieved in fault	project, with projects	developed technology does
	and faster reaction	detection model in	Industrial end-	operations. We	efficiency. We will	social debate	prediction so that	KER's we will enhance	not work), cost-effectiveness
	to 20kV network	daily operations	users and the DSO	will collaborate	also look at the	about the	the large scale	our processes and	risk (the service becomes too
	outages. Flexibility	and develop it		at least with	possibilities for	introduction of	implementation	efficiency	expensive), unpredicted
	enable faster grid	further in		control room	further	flexibilities. At	and product		technological investments
	connection to CO2	production.		service supplier	development in	the distribution	conception of the		that are too large. Regarding
	neutral energy	Regarding the		witch is Enerva	other EU projects	network level,	service is		congestion management:
	resources and	congestion		and we will also		new tools are	profitable.		legislation prevents large-
JSE	enhance dynamic	management, a		need		needed for the	Regarding		scale use of the service,
	grid capacity	model will be		technology		introduction of	flexibilities,		regulation does not support
	management.	created that will		supplier for		flexibilities, and	legislation can		local flexibility and makes it
		enable the		example ABB to		the project will	prevent its use and		unprofitable for the DSO. In
		conceptualization		supply		share	regulation can		general: there is a risk that
		of a new service in		components		information	make it too		cyber security is
		the future.		and data		about different	expensive to use.		compromised with new
				service.		possibilities.	This is also why it is		software and components,
							important to		and the risks do not match
							include the project		the benefits obtained.
							in the national discussion		
			_						
	For PPC, as an	Real-time	Consumers	Federated	Within PPC's	Green Deal:	High initial	With the use of NDAs,	Cyberattacks and data
	aggregator and	Monitoring and	(Reliable power	Learning for	network, we are	Accelerating	investment costs,	employee training,	breaches, regulatory and
	energy producer,	Control, Advanced	supply, Lower	ennanced	thinking of	renewable	Complex	network security,	policy uncertainties, Public
	1017Euge	Inreal Detection	energy costs),	security	auvanceu cyber	energy internetien	integration and	access controis	acceptance and technical
		and Response,	Businesses	analytics,	security. In	integration,	nteroperability		deployment evetem feiluree
		Customer Services	Dusiness	doto oboring for		ennancing	Cubaracourity		deployment, system landles
PDC	provise domand	Customer Services	Ontimized operav	rool_time	nerthore we are	officionov			
FFG					thinking of	erriciency,			
	ontimized energy		husiness	awareness	federated	economy	privacy)		
	dispatch and early		opportunities)	Joint	learning	initiatives FII			
	detection of		Grid Operators	development of	interoperable data	Digital Strategy:			
	potential threats.		(Improved arid	edge computing	sharing, joint	Cybersecurity			
	ultimately leading		efficiency and	applications.	development of	and data			
	to a more secure		security,	Coordinated	edge computing,	privacy, digital			

	and efficient energy system.		Increased revenue)	demand response and flexibility services	demand response and flexibility services	innovation, digital skills and workforce development		HEDGE-I	Neissic Ageneach Beards & Geopartment of the Second Ageneach of the Consystem through eduption of I of solutions
CEVE	Better grid stability, improved energy distribution efficiency; high level services for all clients; Enhanced demand side participation on grid resilience; Support secure and private data exchange	Scaling these technologies to broader applications;	Renewable energy producers; Energy communities.	By sharing pilot data, conducting joint validation studies, and co- developing best practices for grid security.	Facilitating the development and testing of a flexibility market related to Energy Communities.	By showcase the pilot results to regional and, maybe, EU policymakers, influencing future energy policies and supporting the development of local energy communities.	Resistance to change; Lack of awareness specially related to data sharing.	Confidentiality agreements and Internal protocols.	Bureaucracies; Availability of customer adherence; High associated costs. CEVE will mitigate these by monitor government policies and developing a more attractive adherence plan for clients.
HEDNO	By integrating IoT and Edge computing, this KER helps HEDNO enhance grid resilience. It supports HEDNO's efforts to maintain a resilient, adaptable grid that can respond quickly to demand changes—especially crucial as more Renewable Energy Sources are integrated to the network.	HEDNO plans to explore the use IoT/Edge-enabled flexibility tools for grid monitoring and management. This includes using analysis and ai techniques for energy forecasting based on advanced metering to safeguard the grid and improve the network performance in an evolving environment by the changing demand and fast integration of RES.	Prosumers (Reliable power supply, Lower energy costs, Better exploitation of produced energy), Grid Operators (Improved grid efficiency and security, Increased revenue)	HEDNO plans to collaborate with researchers and industry partners to leverage solutions for grid monitoring and analysis and to implement flexibility services for optimising the network efficiency.	Facilitating the development and testing of a flexibility market that leverages HEDGE-IoT solutions will foster synergies and support ongoing EU research efforts in this area. This initiative aims to advance research and collaboration focused on flexibility markets, contributing to the broader goals of grid modernization and energy sustainability across Europe.	This KER supports EU Green Deal objectives by enhancing digital infrastructure for a more sustainable grid. HEDNO will use this KER to demonstrate the value of grid flexibility in line with EU decarbonization goals, potentially guiding future policy developments.	Challenges may include high deployment costs, adaptation requirements for new technology, and initial resistance from traditional stakeholders.	HEDNO plans to protect intellectual property by implementing confidentiality agreements with consortium partners and establishing data protection measures for IoT/Edge solutions developed within the project. Internal protocols will ensure that sensitive information and innovations remain secure, fostering a trustworthy collaboration environment while safeguarding shared IP rights.	Potential risks include slow adoption, regulatory delays, and insufficient incentives for customer participation. HEDNO will address these risks through outreach efforts, monitoring of policy developments, and responsiveness to market advancements. These risks are considered moderate but manageable.

IPTO	The incorporation of IoT/Edge technologies significantly enhances grid flexibility, allowing IPTO to dynamically respond to grid conditions. This capability is critical for integrating distributed energy resources (DERs), managing variable renewable energy (VRE) generation, and reducing congestion. By leveraging real- time data from the edge, IPTO can implement adaptive control strategies that improve grid stability and optimize the use of available resources.	IPTO plans to utilize this KER to implement enhanced flexibility services, such as demand response, dynamic load management, and real-time grid reconfiguration. This will be integrated into the existing grid management system, focusing on improved forecasting, flexibility activation, and coordination with DSOs. The IoT/Edge-enabled flexibility will also support IPTO's future projects aimed at increasing the capacity for renewable energy integration and reducing grid bottlenecks	The direct beneficiaries include grid operators and system planners who require improved tools for managing grid flexibility. Indirect beneficiaries encompass renewable energy producers, energy aggregators, and DSOs, who will experience fewer constraints and increased capacity for renewable integration. Ultimately, the end-users (consumers) benefit from a more resilient grid and enhanced service reliability.	IPT0 aims to collaborate closely with partners such as ICCS and INESC for predictive analytics and real-time edge computing, focusing on flexibility solutions. Joint efforts with HEDN0 and HENEX will involve optimizing flexibility services across transmission and distribution boundaries, utilizing IoT/Edge data to enhance coordination and response capabilities during peak Ioad scenarios.	IPTO will leverage this KER in collaboration with European flexibility research initiatives under programs like Horizon Europe. Engaging with experts in flexibility markets, IPTO plans to further develop ancillary services based on dynamic flexibility activation, which can be extended in projects focused on grid modernization and advanced flexibility solutions	The focus on increased flexibility supports the European Green Deal by facilitating higher integration of renewable energy sources. This KER contributes to achieving the EU's targets for carbon neutrality and enhances the digital transformation of grid operations. It aligns with the EU Digital Strategy by promoting data- driven decision- making and fostering a smart, flexible energy system.	Barriers include the complexity of integrating flexibility services into existing grid operations, high initial deployment costs for IoT/Edge infrastructure, and potential resistance from stakeholders due to a lack of awareness or experience with flexibility solutions. Ensuring interoperability between new and legacy systems is also a potential challenge.	IPTO will implement a combination of data protection strategies and joint IP agreements with project partners. Key innovations related to flexibility algorithms and data analytics tools may be patented, while collaborations will be governed by clear IP sharing agreements.	Risks include the potential for inadequate flexibility response due to unforeseen grid events, cybersecurity threats to IoT/Edge components, and regulatory uncertainties around flexibility services. Mitigation measures involve continuous testing, enhanced cybersecurity protocols, and active participation in regulatory discussions to shape favorable policies for flexibility solutions. The likelihood of these risks is moderate, but mitigation strategies will minimize disruptions.
HENEX	The Local Flexibility Market (LFM) Platform aims to integrate a new product that will enhance resilience and create revenue streams for small market participants.	To utilize KER in our organization and future work, we plan to develop an independent platform as a product for our markets. This platform will focus on: Price Transparency: Ensuring clear and	The end-users and direct beneficiaries of the KER will include: 1. Flexibility Service Providers: Aggregators, industrial electricity customers, and energy	To utilize the KER in collaboration with other HEDGE-IoT partners, we plan to follow a similar approach to our project collaboration with the	To utilize the KER in collaboration with other HEDGE-IoT partners, we plan to exchange ideas with other pilots who also have Local Flexibility Markets (LFM). This will allow us to discuss and	To utilize the KER in new projects that promote and contribute to EU initiatives such as the Green Deal and the EU Digital Strategy, we plan to: 1. Support Sustainability	Several market barriers could potentially affect the market penetration of our exploitable result. One significant barrier is the absence of necessary tools. For instance, if smart meters or	1. Copyright: Research outputs, such as papers, reports, and software developed during the project, are protected by copyright. This ensures that the creators retain control over how their work is used and shared. 2.	Technological obsolescence, regulatory changes, market competition, data privacy breaches, user adoption resistance, financial constraints, operational challenges, and market acceptance

	transparent pricing	communities.	DSO/TSO for	share insights on	Goals: By	monitoring	Collaborative 💦	
	for all market	2.System	market design.	both	promoting	systems are not	Agreements: *******	
	participants.	Operators: Both	Just as we	technological	renewable	available, the	Research projects	Holistic Approach
	Secure Data	Distribution	worked closely	aspects and	energy sources	platform may not	often involve multiple 🕓 📙	towards empowerment of the Digitalization of the Energy Ecosystem through adoption of IoT solutions
	Exchange and	System Operators	with them to	market strategies.	and improving	function	institutions and	
	Transaction	(DSO) and	develop the	For example, the	energy	effectively. This	partners.	
	Validation:	Transmission	market design,	Italian demo,	efficiency, we	lack of essential	Collaborative	
	Facilitating secure	System Operators	we will also	which also has an	will align with	tools can hinder	agreements outline	
	and reliable data	(TSO). 3. Market	collaborate on	LFM, can provide	the Green Deal's	the platform's	the ownership and	
	exchange and	Operator 4. Other	the final	valuable	objectives. The	ability to provide	use of intellectual	
	transaction	Research	product. This	perspectives and	KER will help us	accurate and real-	property created	
	validation between	Institutes:	partnership will	experiences. In	integrate more	time data, which is	during the project.	
	market	Organizations	ensure that the	the HEDGE-IoT	flexible and	crucial for its	These agreements	
	participants.	involved in	final product is	project, our focus	sustainable	operation.	ensure that all parties	
	Increased	research and	well-integrated,	is primarily on	energy solutions	Successful	understand their	
	Assurance and	development	meets the	residential	into our	implementation of	rights and	
	Reduced Risk:	within the energy	needs of all	applications.	projects. 2.	the platform	responsibilities. 3.	
	Providing a higher	sector	stakeholders,	However, in other	Enhance Digital	requires	Data Sharing and	
	level of assurance		and leverages	projects, we can	Integration:	collaboration	Management:	
	and reducing		the collective	shift our focus to	Leveraging the	across the entire	Research projects	
	perceived risks for		expertise of all	different areas,	KER, we will	energy supply	generate a lot of data,	
	System Operators		partners	enabling us to	advance the EU	chain. If	which needs to be	
	(SOs) when		involved.	diversify our	Digital Strategy	stakeholders such	managed and shared	
	contracting with			approach and	by incorporating	as energy	responsibly. Data	
	small-scale assets.			solutions. This	digital	suppliers, system	management plans	
	Common Data			collaborative	technologies	operators, and	and agreements help	
	Exchange Point:			effort will help us	into energy	end-users do not	protect the integrity	
	Establishing a			leverage shared	markets. This	work together, the	and confidentiality of	
	common point of			knowledge and	includes	platform's	research data. 4.	
	data exchange			expertise,	investing in	effectiveness	Licensing: Open-	
	between			enhancing the	digital skills,	could be	source licenses can	
	Iransmission			overall	ensuring	compromised.	be used to share	
	System Uperators			effectiveness and	trustworthy Al,		software and other	
	(ISU) and			innovation in our	and using data		research outputs,	
	Distribution			projects.	analytics to		allowing others to	
	System Uperators				optimize energy		use, modify, and	
	(DSU). Standardization				distribution. S.		distribute the work	
	ord Hormonization						the original organizer'	
							righte 5 Publication	
	i acilitating the						Dights: Decorphore	
	and harmonization				epergy markets		often publish their	
	of interfaces and				supporting the		findings in academic	
					dovolopment of		iournale	
	processes in power				development of		journals.	

			-0-			
markets to simplify		new	Understanding the			
and make trading		technologies	publication rights and			
more efficient.		and business	ensuring that the	-	Holistic Approach	
Standardized Risk		models that	research can be freely		Digitalization of the Energy Ecosystem through adoption of IoT solutions	
Management:		contribute to a	accessed (open			
Implementing		greener and	access) or used by			
standardized risk		more digital	others is crucial. 6.			
management		Europe. 4.	Ethical			
processes for		Facilitate	Considerations:			
wholesale,		Collaboration:	Research projects			
balancing, and		We will engage	must adhere to			
flexibility		with other	ethical guidelines,			
electricity markets.		stakeholders	especially when			
Market Integration:		and projects	dealing with sensitive			
Integrating		across Europe	data or human			
markets and		to share	subjects. Ensuring			
related services		knowledge and	compliance with			
under a single		best practices,	these guidelines			
provider to benefit		ensuring our	protects both the			
from economies of		efforts are	researchers and the			
scale.		aligned with	participants.			
		broader EU				
		initiatives and				
		contribute to a				
		cohesive				
		strategy.				
		Improve Market				
		Efficiency:				
		Implementing				
		standardized				
		processes and				
		platforms				
		through the KER				
		will enhance				
		market				
		transparency				
		and efficiency,				
		making it easier				
		for small-scale				
		and renewable				
		energy				
		providers to				
		participate in				
		the market. 5.				

						Support Sustainable Mobility: By managing the energy needs of electric vehicles and other sustainable transport options, we will contribute to the Green Deal's goal of promoting clean, safe, and connected transport systems. 6. Encourage Sustainable Industry: The KER will support the transition to a circular economy and reduce industrial pollution by encouraging the use of flexible, clean energy		HEDGE-I	Nulleis Aproach teorers (programment of the programment of the Composition of an advancement through adaption of for advancement programment of the Composition of the Composition of the Composition of the Composition of th
						clean energy sources.			
ARETI	Providing an open source and easy to replicate IoT framework suitable for grid real time measurements, enabling better usage of flexibility resources	Ease of onboarding for new device can provide better data on the current use cases and/or enable new ones	DSOs can leverage the result of our pilots in order to replicate the open-source infrastructure on their grid	Partner experience in their respective areas will be taken as inspiration in pilot development in order to adopt the most suitable solutions	Collaboration with universities lead to innovative algorithms and hardware solutions that can be integrated, either in production environments or as rapid deployment	All the devices able to provide services to the network operator, have to adopt the IoT "smart grid ready" defined in the HEDGE-IoT project	Availability of real time measurements from both DSO and private DERs as a foundation of our pilot may limit widespread adoption	Adopting an open standard may lead to lower development/deploy ment costs for DSOs, given a wider adoption	The standardisation of the loT devices is an open issue, so several initiatives are ongoing on this item. To foresee a cooperation between the different experience is very important to share and disseminate the work on the HEDGE-IoT project

					prototypes for use				
					case validation				
AE	Through flexibility services it will be possible to solve local congestion problems and create a profitable business for BSPs	Acea Energia will integrate the best practices acquired from the project, developing the technologies and exploiting them as a basis for future participation in local flexibility markets	By resolving grid- congestion, and therefore increasing its security, end- users and DSOs will benefit.	Acea Energia plans to collaborate with HEDGE-IoT partners in the future to adapt and implement the best technologies in local energy ecosystems.	Acea Energia will engage with other EU researchers and SMEs to exchange knowledge on improving the efficiency of energy communities	Acea energia will lead projects that promote the optimization of energy communities through local flexibility markets, improving technology through the use of lo-T platforms that will contribute to the	High initial costs for implementing digital infrastructure	Standard IPR protection strategy, including patents and licenses, where applicable.	Risk: Incompatibility of innovative solutions with existing infrastructure. Mitigation: Conduct thorough infrastructure assessments and colaborate with tech providers to ensure compatibility.
ELES	This KER offers ELES with a comprehensive roadmap for commercializing HEDGE-IoT solutions, helping to bridge the gap between technological innovation and market adoption. It allows ELES to develop new business models and services tailored to digital grid management, expanding its	ELES plans to use KER for potential commercialization by incorporating entry plans for loT- enabled services which includes integrating them with existing grid management practices for improved flexibility and resilience.	The primary users include transmission and distribution system operators (TSOs and DSOs) who will benefit from the commercialization strategies for digital grid solutions. Energy service companies (ESCOs) are direct beneficiaries, gaining access to new IoT-enabled products and	ELES will work with HEDGE-IoT partners to share best practices and market insights. Collaborative pilots and demonstrations will be conducted to validate business models and gather real- world data. ELES will contribute to joint market	ELES will leverage its strategies to align its network upgrades and offerings with broader EU digitalization goals. The roadmap will be used as a basis for pitching new digital services and solutions to partners and stakeholders within the network.	objectives grid security. ELES will align its digital services with the objectives of the Green Deal and the EU Digital Strategy by focusing on solutions that enhance energy efficiency and grid flexibility. ELES plans to use the insights to contribute to digitalization projects that foster interoperability	Market penetration may be affected by limited awareness of the need for digital grid solutions among traditional energy operators. High implementation costs and the perceived complexity of integrating IoT services with legacy systems could pose additional barriers. Additionally, the market's readiness	ELES will safeguard its intellectual property through comprehensive partnership agreements, clearly defining ownership and usage rights for all developed commercialization strategies. Patent applications will be pursued for any novel business models or processes identified in the roadmap. Confidentiality agreements will be enforced with	A key risk is the potential misalignment between the developed commercialization strategies and market needs, which ELES will mitigate by conducting thorough market validation studies; this risk is estimated as medium. Resistance from other energy stakeholders due to high implementation costs may pose a barrier, which ELES plans to counter cost- benefit analyses.

	portfolio of		services that	analyses and		and	for new business	partners during the	
	offerings.		enhance grid	regulatory		standardization.	models and	development phase to	
	-		management.	assessments,			services could	prevent unauthorized	
				ensuring a			impact the speed	use.	
				unified			of adoption.		
				approach to					
				market entry.					
				The partnership					
				will focus on					
				aligning product					
				offerings with					
				the needs of					
				various					
				stakeholders					
				across the					
				energy					
				ecosystem.					
				This					
				collaborative					
				maximize					
				market uptake					
				of the colutions					
				of the solutions.					
	From R&D	R&D NESTER	Stakeholders,	At least with all	R&D NESTER	The MS platform	Market risks relate	The Consortium	Appearing of similar
	NESIER's	intends to continue	focused on	the partners	intends to	can be adjusted	to general	Agreement mitigates	alternative platform (low
	perspective, the	developing the	potential market	participating in	continue	to integrate	regulation and	this risk and, if	probability). Mitigation
	main value is the	(MS) plotform in	participants (e.g.	the PT pliot:	developing the MS	other flexibility	pusiness models	necessary, additional	action: monitor the
		(PIS) plation in in	ESDa) and SOa	UEVE,	nreducte and	nraduata Ita	arounu nexibility;	agreements can be	
	technical feasibility	working as a		ELERGUNE, REN and INESC	undating it		he used for DSO	established after the	solutions.
	of the provision of	testhed for new	(e.g. 1303)	NEW and INESC	according to the	facilitate the	purposes who	end of the project.	
	existing ancillary	actors to test their			evolving	testing and	operates them		
	services hy	strategies and			regulations that	deployment of	what is the position		
NESTER	distributed	capabilities to			will applied.	the future	of independent		
	resources resorting	participate in				flexibility energy	aggregators, etc.		
	to HEDGE-IoT	ancillary services				solutions in	There are still many		
	platform	markets and/or				flexibility	open questions		
	/technologies.	other Flexibility				markets.	also on national		
	-	Markets(e.g. local					levels.		
		markets for DSOs).							
		R&D NESTER							
		intends to continue							
		developing the MS							

Co-funded by the European Union

for additional			699 ⁹⁹ 999	
products and			2° 2° 2° 2	
updating it				Halistic Approach
according to the			IEDGE-	Dipitalization of the Energy Ecosystem through adoption of foT solutions
evolving				
regulations that				
will applied.				

Partner	Value proposition	Future exploitation strategy	Target Audience	Synergies with other HEDGE-IoT partners	Synergies with other EU researchers/SEMs	Impact on EU and local/regional policies	Market barriers	IPR measures	Possible Exploitation Risks
F6S	Expanding the network of SMEs and Startups through HEDGE-IoT will increase F6S ecosystem and provide further deal opportunities for F6S to disseminate and sell its services as well as engage new service providers into its platform.	F6S provides value-added services to Founders through its platform. HEDGE-IoT will increase F6S ecosystem and provide further deal opportunities for F6S to disseminate and sell its services as well as engage new service providers into its platform.	SMEs, innovators, and entrepreneurs benefit from funded provided by the Open Calls. Broader communities who will gain from the impact of the digital innovations they will develop.	F6S will collaborate with other HEDGE-IoT partners to maximize impact of the campaign and activate their networks.	F6S will share the opportunity it its EU research and industry networks to promote Open Calls, share best practices, and identify applicants. By doing this, the EU innovation ecosystem will be reinforced and shared progress will be enhanced.	Through the co- creation process, we will make sure that the projects implemented under the Open Calls will help support technologies that contribute to EU environmental and digital transformation goals.	This analysis is dependent on scope of Open Calls, which is not yet defined.	N/A	This analysis is dependent on scope of Open Calls, which is not yet defined.
INCL	This KER enhances our open innovation efforts by engaging SMEs and innovators, fostering collaboration through HEDGE-IoT Open Calls. It supports scalable social innovation and sustainable business models, driving societal impact and long-term value.	We plan to use this KER to build strong partnerships with SMEs and innovators, integrating their contributions into our open innovation initiatives. This will drive the development of scalable solutions, support sustainable business models,	The target audience includes SMEs, innovators, and entrepreneurs who will directly benefit from participating in HEDGE-IoT Open Calls, as well as broader communities who will gain from the societal impact of the resulting digital innovations.	We plan to collaborate with other HEDGE-IoT partners by leveraging their networks, expertise, and resources to maximize the reach and impact of the campaign. Together, we will co-design engagement strategies, share insights to refine the Open Calls,	We plan to utilize this KER by engaging our network of EU researchers and SMEs to promote Open Calls, share best practices, and identify high- potential participants. This collaboration will strengthen ties within the EU innovation ecosystem and serve as a	We will use this KER to drive innovation aligned with EU initiatives like the Green Deal and Digital Strategy, promoting sustainable, data- driven solutions. The Open Calls will help develop technologies that support both environmental and digital	Possible market barriers include lack of awareness about the need for data-driven solutions, high development and implementation costs, resistance to adopting new technologies, and limited understanding of the HEDGE-IoT Framework among potential users. Additionally,	We plan to protect our intellectual property rights by implementing clear licensing agreements, ensuring proper documentation of innovations, and using patents or copyrights where applicable. We will also collaborate with legal experts to monitor and enforce IPR, while ensuring that open	Low adoption rates: Mitigated by targeted marketing and awareness campaigns. Likelihood: Medium. Technology integration challenges: Mitigated by providing technical support and ensuring interoperability. Likelihood: Medium. Regulatory changes: Mitigated by staying compliant with evolving EU regulations. Likelihood: Low. Market competition: Mitigated

and enha	ance the	and ensure that	foundation for	transformation	market	innovation	by focusing on unique
societal	impact of	the selected	partnerships in	goals.	fragmentation and	principles are	value propositions and
digital		projects align with	future projects,		regulatory	respected within	continuous innovation.
technolo	ogies in	the overarching	driving shared		challenges could	the HEDGE-IOT	Likelihood; High.
future pi	rojects.	goals of the	progress in digital		also hinder	ecosystem.	
		HEDGE-IoT	and societal		widespread		
		ecosystem.	impact.		adoption.		

Partner	Value proposition	Future exploitation strategy	Target Audience	Synergies with other HEDGE-IoT partners	Synergies with other EU researchers/SEMs	Impact on EU and local/regional policies	Market barriers	IPR measures	Possible Exploitation Risks
ED	ED has previously organized and run Open Call campaigns for research projects. Through the Open Calls ED will gain insights in new services and tools that will complement the HEDGE-IoT framework	More experience in running open calls. To be leveraged in future research actions	Service Developers	Not yet clearly defined. To be explored.	Use the generated knowledge and expertise to attract more clients and to better position ED in future innovation projects	New services towards the digitalization of the grid, increased renewable integration, flexibility provision	Limited interest of service providers, SMEs and startups.	To be defined. Most likely open- source for research purposes, not open-source for commercial purposes	Reluctance to join the HEDGE-IoT Framework
INCL	The added value of this KER lies in fostering the development of innovative, data-driven services that enhance and complement the HEDGE-IoT Framework. These projects will expand our organization's ecosystem, drive technological advancement, and provide actionable insights for scaling impactful digital solutions in future initiatives.	We plan to leverage this KER by integrating the new data-driven services into the HEDGE-IoT Framework, enhancing its functionality and adaptability. These projects will serve as a foundation for developing advanced solutions, scaling innovation, and addressing diverse societal and business needs in future initiatives.	The target audience includes developers, SMEs, and innovators utilizing the HEDGE-IoT Framework to build or enhance their solutions, as well as end-users who will benefit from the advanced data-driven services and functionalities in various applications.	We plan to work closely with other HEDGE-IoT partners to integrate their unique capabilities into the development of data-driven services. By pooling resources and knowledge, we aim to create a diverse set of solutions that extend the functionality of the HEDGE-IoT Framework, fostering innovation and ensuring broad applicability across various industries.	We plan to use this KER to strengthen collaboration with EU researchers and SMEs by sharing insights and expertise to develop innovative, data- driven solutions. This will enable us to align with new EU projects, creating synergies that advance the objectives of the HEDGE-IoT Framework and contribute to the wider EU digital and innovation agendas.	We plan to use this KER to contribute to EU initiatives by developing data- driven services that support the goals of the Green Deal and the EU Digital Strategy. By focusing on sustainability and digital transformation, the Open Call projects will generate solutions that align with EU policy objectives, fostering a greener, more digitally connected future at both the EU and regional levels.	Data privacy concerns: Users may be reluctant to adopt data- driven services due to concerns about data security and privacy. Mitigation: Implement robust security protocols and ensure compliance with data protection regulations. Limited interoperability: New services may struggle to integrate with existing infrastructures or platforms. Mitigation: Focus	Collaborative IP Framework: We will establish a clear framework for joint IP ownership with partners involved in the Open Call projects, ensuring that each party's contributions are protected. Licensing Models: We will explore flexible licensing options, such as open-source or commercial licenses, depending on the nature of the service, to maximize reach while safeguarding core	Evolving Market Needs: Market demands may shift, reducing relevance. Mitigation: Continuously adapt services to emerging trends. Likelihood: Medium. User Integration Challenges: Users may struggle with integrating new services. Mitigation: Provide clear support and integration tools. Likelihood: Medium. IP Conflicts: Disputes over intellectual property could arise. Mitigation: Establish clear IP agreements early on. Likelihood: Low. Partner Dependence: Over-reliance on external partners could limit control. Mitigation:

			on designing	technologies.	Build diverse
			open,	Confidentiality	partnerships with
			interoperable 📻	Agreements: For	contingency plans.
			solutions and	early-stage 🛛 🔾	Likelihood: Low.
			provide	developments,	Training Gaps: Users
			integration	non-disclosure	may lack the expertise
			support.	agreements	to use the services fully.
			Regulatory	(NDAs) will be used	Mitigation: Offer
			uncertainty:	to protect	training and user-
			Changing	sensitive	friendly interfaces.
			regulations	information and	Likelihood: Medium.
			around data usage	proprietary data	
			and digital	shared during the	
			services could	project.	
			create barriers to	Innovation	
			market entry.	Tracking: We will	
			Mitigation: Stay	implement	
			informed on	internal processes	
			regulatory	to document and	
			developments and	track the	
			proactively adjust	development of IP,	
			solutions to	ensuring early	
			remain compliant.	protection	
			Market readiness:	through patents or	
			The target market	trademarks where	
			may not be ready	appropriate,	
			for advanced	especially for	
			data-driven	unique data-	
			services due to	driven	
			lack of technical	functionalities.	
			expertise or		
			infrastructure.		
			Mitigation:		
			Provide training		
			and support to		
			build market		
			readiness and		
			adoption capacity.		

Table 19: KER#16 A concrete dissemination and communication plan including clustering activities and synergies with relevant European initiatives and projects

Partner	Value proposition	Future exploitation strategy	Target Audience	Synergies with other HEDGE-loT partners	Synergies with other EU researchers/SEMs	Impact on EU and local/regional policies	Market barriers	IPR measures	Possible Exploitation Risks
F6S	Expanding the network of SMEs and Startups, as partners and beneficiaries but also as future clients. Reinforcing the position of F6S as a expert of Communication and Dissemination in EU Projects	Expanding the network of SMEs and Startups, as partners and beneficiaries but also as future clients. Reinforcing the position of F6S as a expert of Communication and Dissemination in EU Projects	Expanding the network of SMEs and Startups, as partners and beneficiaries but also as future clients. Reinforcing the position of F6S as a expert of Communication and Dissemination in EU Projects	Expanding the network of SMEs and Startups, as partners and beneficiaries but also as future clients. Reinforcing the position of F6S as a expert of Communication and Dissemination in EU Projects	Expanding the network of SMEs and Startups, as partners and beneficiaries but also as future clients. Reinforcing the position of F6S as a expert of Communication and Dissemination in EU Projects	Expanding the network of SMEs and Startups, as partners and beneficiaries but also as future clients. Reinforcing the position of F6S as a expert of Communication and Dissemination in EU Projects	Expanding the network of SMEs and Startups, as partners and beneficiaries but also as future clients. Reinforcing the position of F6S as a expert of Communication and Dissemination in EU Projects	Expanding the network of SMEs and Startups, as partners and beneficiaries but also as future clients. Reinforcing the position of F6S as a expert of Communication and Dissemination in EU Projects	Expanding the network of SMEs and Startups, as partners and beneficiaries but also as future clients. Reinforcing the position of F6S as a expert of Communication and Dissemination in EU Projects
ED	Expand the network of partners and clients	More synergies to pursue future innovation actions	Academia, Industry, Energy Stakeholders, IT partners, Service and Technology Providers	Not yet clearly defined. To be explored.	Use the generated knowledge and expertise to attract more clients and to better position ED in future innovation projects	Exploit the communication and dissemination channels and clusters of HEDGE-IoT in future projects	N/A	To be defined. Most likely open- source for research purposes, not open-source for commercial purposes	N/A

Partner	Value proposition	Future exploitation strategy	Target Audience	Synergies with other HEDGE-IoT partners	Synergies with other EU researchers/SEMs	Impact on EU and local/regional policies	Market barriers	IPR measures	Possible Exploitation Risks
TRIALOG	Trialog already have a Practice for Privacy and Security. This Al Plan will come to extend it as an add on. The aim of this new cross-domain Plan (Privacy, security, Al) is to be very flexible and to adapt it the needs and target of the project.	The added value for Trialog is that it can be proposed as a service to support Al development.	The direct beneficiary will be organisations developing, managing, maintaining Al systems.	This KER is based on regulation and standardization, and will be enriched by future work and projects.	Communicate and disseminate results of the projects to attract more clients to the Platform and to better position F6S in EU innovation projects	Colaborations to regulation and Standardisation are done by Trialog on this subject.	N/A	N/A	No implication of the pilot participants to provide the necessary inputs for the practice.

Table 21 KER 18 Further development of the ODCT (Ontology-Driven Constraits Tester) tool. New use cases, new features and validation on real data.

Partner	Value proposition	Future exploitation strategy	Target Audience	Synergies with other HEDGE-IoT partners	Synergies with other EU researchers/SEMs	Impact on EU and local/regional policies	Market barriers	IPR measures	Possible Exploitation Risks
TRIALOG	Trialog already has a proof of concept of this ontology tool. The added value within Hedge-IoT is to go further with another version, new features and to validate if with real world data.	This KER will be used by TRIALOG for future work.	The end user is engineers in the industry to support them in the development and the validate of the semantic interoperability of their systems.	The tool will be provided to pilot partners of HEDGE-IoT as well as technical support.	This tool could be further developed and used in other EU projects.	There are discussions with JRC CoC ESA phase 2 to maybe use this tool for semantic ontology testing.	N/A	N/A	N/A

Partner	Value proposition	Future exploitation strategy	Target Audience	Synergies with other HEDGE-IoT partners	Synergies with other EU researchers/SEMs	Impact on EU and local/regional policies	Market barriers	IPR measures	Possible Exploitation Risks
SONAE	The service will enable the tertiary buildings of having a optimization based on IoT and ML technologies that will provide the best management of its assets.	This new service will be a new adding into our portfolio and will be the first service of this type in the country.	Tertiary buildings, industries, B2B sector.	The other partners will be an active stakeholder of the service, namely INESCTEC, CEVE and REN. INESCTEC will develope EdgeConnect Platform for market participation. CEVE will associate their assets with ours to increase the flexibility portfolio for market participation. REN is the market operator that will requesting flexibility from end-users (B2B or B2C).	The service will demand additional developments from some of our partners' networks. The participation in new EU projects can always be necessary to add new features to the service.	The ability to manage energy consumption and flexibility will be used to optimize management of the energy grid (Green Deal). The management of assets can be used according to different models, either to reduce costs or contribute to reduce CO2 footprint.	A barrier can be the general regulation and business models around flexibility: how flexibility can be used from the aggregator perspective, who operates assets. There are still some open questions on a national level.	The Consortium Agreement mitigates this risk and, if necessary, additional agreements can be established after the end of the project.	Appearing of similar alternative services (low probability). Mitigation action: monitor the appearance of similar solutions. Lack of regulation can be a risk so there is always the possibility of developing a solution that needs to be changed after regulation is released.

HEDGE-IOT